$\rho[1900] ^+$ Two Body Decay Vertices(38)

There are 38 vertices in this part

Vertex 39: $\pi^-({p_3})~-\rho[1900] ^+_{\beta }~({p_2})~-\omega_3[1670]^{0}
_{\mu ,\nu ,\alpha }~({p_1})~$

\begin{eqnarray*}
&V_{39}=\epsilon_{{p_1},{p_2},\mu ,\beta }f_{1693}gi~{p_2}_\nu {p_2}_\alpha
\end{eqnarray*}


Vertex 40: $\omega_3[1670]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-\rho[1900] ^-_{
\beta }~({p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{40}=-\epsilon_{{p_1},{p_2},\mu ,\beta }f_{1693}gi~{p_2}_\nu {p_2}_\alpha
\end{eqnarray*}


Vertex 41: $\gamma^{0}_{\beta }~({p_3})~-\rho[1900] ^-_{\alpha }~({p_2})~-
a_2[1320]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{41}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}_...
...beta }
f_{1379}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{1379})
\end{eqnarray*}


Vertex 42: $a_2[1320]^-_{\mu ,\nu }~({p_1})~-\rho[1900] ^+_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{42}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...beta }
f_{1379}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{1379})
\end{eqnarray*}


Vertex 43: $\gamma^{0}_{\beta }~({p_3})~-\rho[1900] ^-_{\alpha }~({p_2})~-
a_2[1700]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{43}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}_...
...beta }
f_{1040}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{1040})
\end{eqnarray*}


Vertex 44: $a_2[1700]^-_{\mu ,\nu }~({p_1})~-\rho[1900] ^+_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{44}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...beta }
f_{1040}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{1040})
\end{eqnarray*}


Vertex 45: $\gamma^{0}_{\alpha }~({p_3})~-\pi_1[1400]^-_{\nu }~({p_2})~-
\rho[1900] ^+_{\mu }~({p_1})~$

\begin{eqnarray*}
&V_{45}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\mu g_{\nu ,...
..._\mu g_{\nu ,\alpha }f_{469}-2{p_3}_\nu g_{\mu ,\alpha }f_{469})
\end{eqnarray*}


Vertex 46: $\rho[1900] ^-_{\mu }~({p_1})~-\pi_1[1400]^+_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{46}={\displaystyle{g \over 2}}~(-{p_1}^2{p_3}_\mu g_{\nu ...
..._\mu g_{\nu ,\alpha }f_{469}+2{p_3}_\nu g_{\mu ,\alpha }f_{469})
\end{eqnarray*}


Vertex 47: $\gamma^{0}_{\alpha }~({p_3})~-\pi_1[1600]^-_{\nu }~({p_2})~-
\rho[1900] ^+_{\mu }~({p_1})~$

\begin{eqnarray*}
&V_{47}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\mu g_{\nu ,...
..._\mu g_{\nu ,\alpha }f_{467}-2{p_3}_\nu g_{\mu ,\alpha }f_{467})
\end{eqnarray*}


Vertex 48: $\rho[1900] ^-_{\mu }~({p_1})~-\pi_1[1600]^+_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{48}={\displaystyle{g \over 2}}~(-{p_1}^2{p_3}_\mu g_{\nu ...
..._\mu g_{\nu ,\alpha }f_{467}+2{p_3}_\nu g_{\mu ,\alpha }f_{467})
\end{eqnarray*}


Vertex 49: $\pi^-({p_3})~-\gamma^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{\mu }~(
{p_1})~$

\begin{eqnarray*}
&V_{49}=\epsilon_{{p_1},{p_2},\mu ,\nu }f_{160}gi
\end{eqnarray*}


Vertex 50: $\rho[1900] ^-_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-\pi^+(
{p_3})~$

\begin{eqnarray*}
&V_{50}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{160}gi
\end{eqnarray*}


Vertex 51: $a_0[1450]^-({p_3})~-\gamma^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{
\mu }~({p_1})~$

\begin{eqnarray*}
&V_{51}={\displaystyle{f_{159}gi \over 2}}~(-{p_1}^2g_{\mu ,\nu }-2{p_1}_\nu
{p_2}_\mu +{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 52: $\rho[1900] ^-_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
a_0[1450]^+({p_3})~$

\begin{eqnarray*}
&V_{52}={\displaystyle{f_{159}gi \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 53: $\eta^{'}[958]^{0}({p_3})~-\rho[770]^-_{\nu }~({p_2})~-
\rho[1900] ^+_{\mu }~({p_1})~$

\begin{eqnarray*}
&V_{53}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{158}g
\end{eqnarray*}


Vertex 54: $\rho[1900] ^-_{\mu }~({p_1})~-\rho[770]^+_{\nu }~({p_2})~-
\eta^{'}[958]^{0}({p_3})~$

\begin{eqnarray*}
&V_{54}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{158}g
\end{eqnarray*}


Vertex 55: $f_0[600]^{0}({p_3})~-\rho[770]^-_{\nu }~({p_2})~-\rho[1900] ^+_{
\mu }~({p_1})~$

\begin{eqnarray*}
&V_{55}=g~({p_1}_\nu {p_2}_\mu f_{157}+g_{\mu ,\nu }f_{156})
\end{eqnarray*}


Vertex 56: $\rho[1900] ^-_{\mu }~({p_1})~-\rho[770]^+_{\nu }~({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{56}=g~({p_1}_\nu {p_2}_\mu f_{157}+g_{\mu ,\nu }f_{156})
\end{eqnarray*}


Vertex 57: $f_0[980]^{0}({p_3})~-\rho[770]^-_{\nu }~({p_2})~-\rho[1900] ^+_{
\mu }~({p_1})~$

\begin{eqnarray*}
&V_{57}=g~({p_1}_\nu {p_2}_\mu f_{155}+g_{\mu ,\nu }f_{154})
\end{eqnarray*}


Vertex 58: $\rho[1900] ^-_{\mu }~({p_1})~-\rho[770]^+_{\nu }~({p_2})~-
f_0[980]^{0}({p_3})~$

\begin{eqnarray*}
&V_{58}=g~({p_1}_\nu {p_2}_\mu f_{155}+g_{\mu ,\nu }f_{154})
\end{eqnarray*}


Vertex 59: $\pi^-({p_3})~-\omega[782]^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{\mu
}~({p_1})~$

\begin{eqnarray*}
&V_{59}=\epsilon_{{p_1},{p_2},\mu ,\nu }f_{152}gi
\end{eqnarray*}


Vertex 60: $\rho[1900] ^-_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
\pi^+({p_3})~$

\begin{eqnarray*}
&V_{60}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{152}gi
\end{eqnarray*}


Vertex 61: $\pi^-({p_3})~-\phi[1020]^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{\mu
}~({p_1})~$

\begin{eqnarray*}
&V_{61}=\epsilon_{{p_1},{p_2},\mu ,\nu }f_{151}gi
\end{eqnarray*}


Vertex 62: $\rho[1900] ^-_{\mu }~({p_1})~-\phi[1020]^{0}_{\nu }~({p_2})~-
\pi^+({p_3})~$

\begin{eqnarray*}
&V_{62}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{151}gi
\end{eqnarray*}


Vertex 63: $\pi^-({p_3})~-h_1[1170]^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{\mu }~
({p_1})~$

\begin{eqnarray*}
&V_{63}=-gi~({p_1}_\nu {p_2}_\mu f_{150}+g_{\mu ,\nu }f_{149})
\end{eqnarray*}


Vertex 64: $\rho[1900] ^-_{\mu }~({p_1})~-h_1[1170]^{0}_{\nu }~({p_2})~-\pi^+
({p_3})~$

\begin{eqnarray*}
&V_{64}=gi~({p_1}_\nu {p_2}_\mu f_{150}+g_{\mu ,\nu }f_{149})
\end{eqnarray*}


Vertex 65: $f_0[600]^{0}({p_3})~-b_1[1235]^-_{\nu }~({p_2})~-\rho[1900] ^+_{
\mu }~({p_1})~$

\begin{eqnarray*}
&V_{65}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{148}g
\end{eqnarray*}


Vertex 66: $\rho[1900] ^-_{\mu }~({p_1})~-b_1[1235]^+_{\nu }~({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{66}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{148}g
\end{eqnarray*}


Vertex 67: $\pi^-({p_3})~-h_1[1380]^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{\mu }~
({p_1})~$

\begin{eqnarray*}
&V_{67}=-gi~({p_1}_\nu {p_2}_\mu f_{147}+g_{\mu ,\nu }f_{146})
\end{eqnarray*}


Vertex 68: $\rho[1900] ^-_{\mu }~({p_1})~-h_1[1380]^{0}_{\nu }~({p_2})~-\pi^+
({p_3})~$

\begin{eqnarray*}
&V_{68}=gi~({p_1}_\nu {p_2}_\mu f_{147}+g_{\mu ,\nu }f_{146})
\end{eqnarray*}


Vertex 69: $\pi^-({p_3})~-\omega[1420]^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{
\mu }~({p_1})~$

\begin{eqnarray*}
&V_{69}=\epsilon_{{p_1},{p_2},\mu ,\nu }f_{145}gi
\end{eqnarray*}


Vertex 70: $\rho[1900] ^-_{\mu }~({p_1})~-\omega[1420]^{0}_{\nu }~({p_2})~-
\pi^+({p_3})~$

\begin{eqnarray*}
&V_{70}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{145}gi
\end{eqnarray*}


Vertex 71: $\pi^-({p_3})~-h_1[1595]^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{\mu }~
({p_1})~$

\begin{eqnarray*}
&V_{71}=-gi~({p_1}_\nu {p_2}_\mu f_{144}+g_{\mu ,\nu }f_{143})
\end{eqnarray*}


Vertex 72: $\rho[1900] ^-_{\mu }~({p_1})~-h_1[1595]^{0}_{\nu }~({p_2})~-\pi^+
({p_3})~$

\begin{eqnarray*}
&V_{72}=gi~({p_1}_\nu {p_2}_\mu f_{144}+g_{\mu ,\nu }f_{143})
\end{eqnarray*}


Vertex 73: $\pi^-({p_3})~-\omega_[1650]^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{
\mu }~({p_1})~$

\begin{eqnarray*}
&V_{73}=\epsilon_{{p_1},{p_2},\mu ,\nu }f_{142}gi
\end{eqnarray*}


Vertex 74: $\rho[1900] ^-_{\mu }~({p_1})~-\omega_[1650]^{0}_{\nu }~({p_2})~-
\pi^+({p_3})~$

\begin{eqnarray*}
&V_{74}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{142}gi
\end{eqnarray*}


Vertex 75: $\pi^-({p_3})~-\phi[1680]^{0}_{\nu }~({p_2})~-\rho[1900] ^+_{\mu
}~({p_1})~$

\begin{eqnarray*}
&V_{75}=\epsilon_{{p_1},{p_2},\mu ,\nu }f_{141}gi
\end{eqnarray*}


Vertex 76: $\rho[1900] ^-_{\mu }~({p_1})~-\phi[1680]^{0}_{\nu }~({p_2})~-
\pi^+({p_3})~$

\begin{eqnarray*}
&V_{76}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{141}gi
\end{eqnarray*}