$\omega^h[1900]^{0}$ Two Body Decay Vertices(24)

There are 24 vertices in this part

Vertex 25: $\omega_3[1670]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-
\omega^h[1900]^{0}_{\beta }~({p_2})~-\gamma^{0}_{\gamma }~({p_3})~$

\begin{eqnarray*}
&V_{25}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...&-2{p_3}_\nu {p_3}_\alpha {p_3}_\beta
g_{\mu ,\gamma }f_{1760})
\end{eqnarray*}


Vertex 26: $\phi_3[1850]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-\omega^h[1900]^{0}
_{\beta }~({p_2})~-\gamma^{0}_{\gamma }~({p_3})~$

\begin{eqnarray*}
&V_{26}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...&-2{p_3}_\nu {p_3}_\alpha {p_3}_\beta
g_{\mu ,\gamma }f_{1746})
\end{eqnarray*}


Vertex 27: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-\omega^h[1900]^{0}_{\alpha }~(
{p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{27}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{549}+{p_2}_\mu g_{\nu ,\alpha
}f_{548})
\end{eqnarray*}


Vertex 28: $\pi^-({p_3})~-\omega^h[1900]^{0}_{\alpha }~({p_2})~-a_2[1320]^+_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{28}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{546}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 29: $a_2[1320]^-_{\mu ,\nu }~({p_1})~-\omega^h[1900]^{0}_{\alpha }~(
{p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{29}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{546}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 30: $\pi^-({p_3})~-\omega^h[1900]^{0}_{\alpha }~({p_2})~-a_2[1700]^+_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{30}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{536}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 31: $a_2[1700]^-_{\mu ,\nu }~({p_1})~-\omega^h[1900]^{0}_{\alpha }~(
{p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{31}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{536}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 32: $\rho[770]^-_{\mu }~({p_1})~-\rho[770]^+_{\nu }~({p_2})~-
\omega^h[1900]^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{32}=gi~({p_1}_\nu {p_1}_\alpha {p_2}_\mu f_{517}+{p_1}_\n...
...g_{\nu ,\alpha }f_{516} \\ &-{p_3}_\nu g_{\mu ,\alpha }
f_{515})
\end{eqnarray*}


Vertex 33: $\omega[782]^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2}
)~-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{33}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\mu g_{\nu...
..._\mu g_{\nu ,\alpha }f_{513}+2{p_3}_\nu g_{\mu ,\alpha }f_{513})
\end{eqnarray*}


Vertex 34: $\omega[782]^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
\omega^h[1900]^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{34}=gi~({p_1}_\nu {p_1}_\alpha {p_2}_\mu f_{512}+{p_1}_\n...
...}_\alpha g_{\mu ,\nu }f_{509}+{p_2}_\mu g_{\nu ,\alpha }f_{510})
\end{eqnarray*}


Vertex 35: $\phi[1020]^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2})~
-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{35}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\mu g_{\nu...
..._\mu g_{\nu ,\alpha }f_{507}+2{p_3}_\nu g_{\mu ,\alpha }f_{507})
\end{eqnarray*}


Vertex 36: $\phi[1020]^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
\omega^h[1900]^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{36}=gi~({p_1}_\nu {p_1}_\alpha {p_2}_\mu f_{506}+{p_1}_\n...
...}_\alpha g_{\mu ,\nu }f_{503}+{p_2}_\mu g_{\nu ,\alpha }f_{504})
\end{eqnarray*}


Vertex 37: $h_1[1170]^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{37}={\displaystyle{gi \over 2}}~({p_1}^2\epsilon_{{p_2},\...
...},\mu ,\nu }f_{502}+2\epsilon_{{p_3},\mu ,\nu ,\alpha }
f_{501})
\end{eqnarray*}


Vertex 38: $h_1[1380]^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{38}={\displaystyle{gi \over 2}}~({p_1}^2\epsilon_{{p_2},\...
...},\mu ,\nu }f_{500}+2\epsilon_{{p_3},\mu ,\nu ,\alpha }
f_{499})
\end{eqnarray*}


Vertex 39: $\omega[1420]^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2}
)~-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{39}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\mu g_{\nu...
..._\mu g_{\nu ,\alpha }f_{493}+2{p_3}_\nu g_{\mu ,\alpha }f_{493})
\end{eqnarray*}


Vertex 40: $h_1[1595]^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{40}={\displaystyle{gi \over 2}}~({p_1}^2\epsilon_{{p_2},\...
...},\mu ,\nu }f_{492}+2\epsilon_{{p_3},\mu ,\nu ,\alpha }
f_{491})
\end{eqnarray*}


Vertex 41: $\omega_[1650]^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~(
{p_2})~-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{41}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\mu g_{\nu...
..._\mu g_{\nu ,\alpha }f_{477}+2{p_3}_\nu g_{\mu ,\alpha }f_{477})
\end{eqnarray*}


Vertex 42: $\phi[1680]^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2})~
-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{42}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\mu g_{\nu...
..._\mu g_{\nu ,\alpha }f_{475}+2{p_3}_\nu g_{\mu ,\alpha }f_{475})
\end{eqnarray*}


Vertex 43: $\pi^-({p_3})~-\omega^h[1900]^{0}_{\nu }~({p_2})~-\pi_1[1400]^+_{
\mu }~({p_1})~$

\begin{eqnarray*}
&V_{43}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{268}g
\end{eqnarray*}


Vertex 44: $\pi_1[1400]^-_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2})~-
\pi^+({p_3})~$

\begin{eqnarray*}
&V_{44}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{268}g
\end{eqnarray*}


Vertex 45: $\pi^-({p_3})~-\omega^h[1900]^{0}_{\nu }~({p_2})~-\pi_1[1600]^+_{
\mu }~({p_1})~$

\begin{eqnarray*}
&V_{45}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{228}g
\end{eqnarray*}


Vertex 46: $\pi_1[1600]^-_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2})~-
\pi^+({p_3})~$

\begin{eqnarray*}
&V_{46}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{228}g
\end{eqnarray*}


Vertex 47: $\omega^h[1900]^{0}_{\mu }~({p_1})~-f_0[600]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{47}=f_{39}gi~{p_2}_\mu
\end{eqnarray*}


Vertex 48: $\omega^h[1900]^{0}_{\mu }~({p_1})~-f_0[980]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{48}=f_{38}gi~{p_2}_\mu
\end{eqnarray*}