next up previous contents
Next: SM in UG and Up: Physical Model Previous: Examples of Physical Model   Contents

Standard Model and Extensions

The following is the input files for Standard Model.


\begin{picture}(490,150)
\put(230,70){\oval(480,140)}
\put(0,70){
\begin{tabular...
...ng''; \\
model\_time:='''Oct 13, 1994''; \\
;end;
\end{tabular}}
\end{picture}

\% ----------------------- File: mode_input -------------------- \\
\%                 The standard model in unitary gauge        \\

algebraic$
%------------------------- Gauge fields -------------------------------
% The first is the gauge field. So in the mode, you must input 
% how many gauge fields and for each gauge field, declare SU(n) ( we 
% have just realize SU(n) gauge field in the system), notation for the 
% field, goupling constant, gauge fix term  and gauge parameter ( different 
% gauge can be chosen by differnet gauge fix term and different gauge 
% parameter), and you should indicate if the gauge symeetry is breaking
% or not. 

gaugefields:=
%     No.  Name  SU(n)   notation  coupling   gaugefixterm gauge_pa breaking
   '((1    u     1       b         g1        gfix1        infinite   yes    ) 
     (2    su    2       a         g         gfix2        infinite   yes     )
     (3    su    3       gs        g3        gfix3        1         no     ) 
    )$
gfix1:=pd(b(v),v)$ 
gfix2:=pd(a(i1,v),v)$ 
gfix3:=pd(gs(i1,v),v)$ 

% where b is the u(1) field, a is the su(2) field and gs is the su(3) field. 
%----------------------------------------------------------------------

%------------------------ Matter fields -------------------------------- 
% The second is the matter field. for each matter field, you must input 
% the name,  2 times spin, chiral ( r --- right, l --- left or r-l  
% together) and then the gauge group parameter for each gauge group 
% ( for u(1), it is u(1) charge and for su(n), it is mutiplet number) 
% 
matterinput:={{name,  2*spin,  chiral, "|g",  1,     2,    3}, 
              { hig,   0  ,    rl  ,          1,     2,    0},
              { el ,   1,      l  ,          -1,     2,    0}, 
              { er ,   1,      r  ,          -2,     0,    0}, 
              { q1l ,   1,      l  ,          1/3,    2,    3}, 
              { q1dr,   1,      r  ,         -2/3,    0,    3},    
              { q1ur,   1,      r  ,          4/3,    0,    3}
              }$   
% where: 
%  hig is the Higgs boson doublet with u(1) charge 1 and su(3) singelet. 
%  el is the electron left-hand doublet with u(1) charge -1 and su(3) singelet. 
%  er is the electron right-hand singelet with u(1) charge -2 and su(3) 
%  singelet. 
%  q1l is the first generation quark left-hand doublet with u(1) charge 
%  1/3 and su(3) triplet. 
%  q1dr is the first generation down quark right-hand singelet with u(1) 
%  charge -2/3 and su(3) triplet. 
%  q1ur is the first generation up quark right-hand singelet with u(1) 
%  charge 4/3  and su(3) triplet. 
%----------------------------------------------------------------------


%------------------------ Charge list of particles ------------------------ 
% In fact, The charge of particles can be calculated out by using the 
% definition of charge and the definition of all the fields.  

pchalist:={{hig,h0(0)},             %hig field's componet h0 is of charge 0. 
           {el,nue(0),ee(-1)},      %el field's componets nue -- 0, ee -- -1. 
           {er,ee(-1)},             %er field's componet ee is of charge -1.
           {q1l,qu(2/3),qd(-1/3)},  %q1l's componets qu -- 2/3, qd -- -1/3. 
           {q1ur, qu(2/3)},         %q1ur's componet qu -- 2/3.   
           {q1dr, qd(-1/3)},        %q1dr's componet qd -- -1/3.   
           {a,w(1),w(-1),z(0),p(0)},%a's componets w -- 1, z -- 0, p --0. 
           {b,p(0),z(0)},           %a's componets z -- 0, p --0. 
           {gs,gs(0)}               %gs's componet gs -- 0.
          };

%----------------------------------------------------------------------



%------------------- Definition of mutiplet -------------------------
%
% To definition the mutiplet is not a trivial thing in general case, 
% the definition of vector mutiplets can be done in the following way. 
% the definition of tensor mutiplet are realized in SU(5) gauge theory 
% case. 
%
%         name  n_group   1_componet 2_componet   ...   
 mdefl:={{hig, {2,        0   ,   (v0+h0)/2**0.5}},  
         {el , {2,        nue   ,   ee}}, 
         {er , {2,        ee           }}, 
         {q1l , {2,       qu   ,  qd}}, 
         {q1dr, {2,       qd          }},
         {q1ur, {2,       qu            }},  
         {qu,  {3,        qu(1),   qu(2) ,  qu(3)}},
         {qd,  {3,        qd(1)  , qd(2) ,  qd(3)}}
        }$ 

vancumexpectation:='((hig v0));

% where hig is the Higgs doublet for the second gauge group su(2) 
% and the definition of it's componets are given in unitary gauge. 
% the vancume expextation of hig is v0 so that in the 2_componet 
% expression of hig there is only one higgs field h0. 
% el, q1l are electron and first generation quark left-hand double for
% the second gauge field su(2). 
% er, q1dr and q1ur are electron, first generation down quark and up quark 
% right-hand singelet for the second gauge field su(2). 
% the qu, qd which appeared in q1l,q1dr,q1ur componets are triplet for 
% the third guage field su(3). 
%------------------------------------------------------------------------- 

%------------------- Fermion mix ------------------------- 
% 
% Definition of Fermion Generation: 
% Generation is a very useful concept in physical model. We can construct 
% the lagrangian for only one generation, then add almost the same terms
% for the other generation and make some rotations which are caused by  
% Yukawa coupling or Higgs self-interaction terms. In the following, we 
% just introduce the definition for fermion generations.     
% There are three generation quark and lepton in the SM as shown in the 
% following 
  
realfamily:='((q1l q2l q3l) (q1dr q2dr q3dr) (q1ur q2ur q3ur)
              (qu qc qt) (qd qs qb) 
              (el mul taul) (er mur taur)
              (ee mu tau) (nue numu nut)
              );

% where (q1l q2l q3l) is the three generations of left-hand double quark, 
% (q1dr q2dr q3dr) is the three generations of right-hand singlet down quark, 
% (q1ur q2ur q3ur) is the three generations of right-hand singlet up quark. 
% (qu qc qt) and (qd qs qb) are the coressponding componets for the three 
% generation quarks.
% where (el mul taul) is the three generations of left-hand double lepton, 
% (er mur taur) is the three generations of right-hand singlet lepton, 
% (ee mu tau) and (nue numu nut) are the coressponding componets for the 
% three generation leptons.

% Mix Matrices: 

mixlist:='(
            (l (s1 (qd qs qb)) (s2 (qu qc qt))
               (se1 (ee mu tau)) (se1 (nue numu nut)) 
            )
            (r (t1 (qd qs qb)) (t2 (qu qc qt))
               (te1 (ee mu tau))
            ) 
          );  

% Definition of CKM Matrix: ]
 
mixlistcondition:={s2(-1)*s1(1)=>v_ckm(1)}; 

% where the mix matrix for the three left-hand generations are: 
%   mix matrix s1 for (qd qs qb),  mix matrix s2 for (qu qc qt),
%   mix matrix se1 for (ee mu tau) and (nue numu nut).  
%   The reason that the mix matrix of (nue numu nut) can be chosen as 
%   the smae mix matrix of ( ee mu tau) is due to that nue, numu, nut
%   have the same mass so they can be mixed in any way. The choice of 
%   the same mix matrix se1 for (ee mu tau) and (nue numu nut) make 
%   representation in the simplist way. For eaxmple, If you have a model 
%   with the neutrons (nue numu nut) are of different masses, you must 
%   choose different mix matrices for leptons and neutrons and as a result
%   that you need to definition CKM matrix for leptons in the above 
%   mixlistcondition.  
% The mix matrix for the three right-hand generations are: 
%   mix matrix t1 for (qd qs qb), t2 for (qu qc qt)
%   and te1 for (ee mu tau). 
%------------------------------------------------------------------------ 


%-------------------------- Globel Symmetry ------------------------------ 
%
% The third is the globel symmetry of the model, there are lepton number 
% conservation as globel symmetry in Standrad Model and the lepton numbers 
% are set to each particles in the model. gbsymmetrylist is the globel 
% symmetry list.

gbsymmetrylist:={len,lmuon,ltau};
gbsymmetrydata:={{len,  {el,1},   {er,1}},
                 {lmuon,{mul,1},  {mur,1}},
                 {ltau, {taul,1}, {taur,1}}}$  

% where globel symmetry number len are 1 for el and 1 for er, 
% globel symmetry number lmuon are 1 for mul and 1 for mur, 
% globel symmetry number ltau are 1 for taul and 1 for taur. 
% In the system, it is supposed that the lepton number of particles 
% which do not appeared in each lepton number table in the gbsymmetrydata 
% are set to zero and all the globel symmetry numbers for anti-particles 
% are set to the minus times that of the particles. 
%----------------------------------------------------------------------

%-------------------- Masses and Other Paramters ------------------------ 
% The names of masses of all the particles are given in the following 
% table phymass and all the zero mass particles are also set it's mass 
% to zero in the table.  
 
phymass:={{w, wm}, {z, zm}, {p, 0}, {h0, hm}, 
          {ee, fme},{nue, 0}, 
          {mu, fmmu},{numu, 0}, 
          {tau, fmtau},{nut, 0}, 
          {qd, fmd}, {qu, fmu},
          {qs, fms}, {qc, fmc},
          {qb, fmb}, {qt, fmt}
          }$

% The parameter set are chosen in table phyinput and this set is used 
% as physical input of the model, or it can be called as the choice of scheme. 
% To change scheme, your can choose different physical input in the table. 
% For eaxmple, to use Z boson's mass zm instead of the w boson's mass wm, 
% to use electronic coupling g1 instead of sin(thta), for this propose, 
% the relation of g1,g and thta in the paramters relation table construles 
% should be changed. 

phyinput:={wm, hm, g, sin(thta), 
           fme, 
           fmmu, 
           fmtau, 
           fmd, fmu,
           fms, fmc,
           fmb, fmt
          }$    


% -----------------  Mix of vector boson -----------------------
% 

mixrules:={ a(1,~v) => (w(1,v)+w(-1,v))/2**0.5,
            a(2,~v) => (w(-1,v)-w(1,v))/2**0.5/i,
            a(3,~v) => z(0,v),
            b(~v)   => p(0,v) };

bosonmix:='((sxpz p z)); 
%----------------------------------------------------------------- 

% -----------------  Mix of Higgs boson -----------------------
% The mix of Higgs boson will appeared in the model with more than 
% one Higgs mutiplet. For eaxmple, in the two Higgs doublet model. 
%----------------------------------------------------------------- 

% ------------  Mix of Higgs boson and vector boson -------------
% The mix of Higgs boson and vector boson is required to be cancelled
% by some terms appeared in the gauge fix terms and the system will 
% automatically add these terms to the gauge fix term given in above 
% gauge fields section.
%----------------------------------------------------------------- 

% --------- Mix Matrices of Higgs boson and vector boson---------
 
matrixlist:={ {sxpz,{cos(thta),sin(thta)},{-sin(thta),cos(thta)}} 
            }; 

%where matrixlist is the list of all the boson mix matrices. the 
%mix angle thta of photon and Z boson is introduce the it's mix 
%matrix expression.  
%----------------------------------------------------------------- 

% --------- To solve parameter relations---------
% it is obvious that not all the parameters appeared in the model are 
% indepandent and some of them should be expressed by others. In the 
% following, there are two way to choose which parameters should be 
% expressed by others. One is to put the expressions of the parameters 
% into the list construles and another is to put the parameters in the 
% list mixfix, then the system will give the expression when it deal the
% mix of particles. 
  
mixfix:={};
construles:={ g1=>g*sin(thta)/cos(thta) 
            }; 

% The following is the another way. 
%mixfix:={g1};
%construles:={ }; 

%
%----------------------------------------------------------------------

%---------------------- The charge definition --------------------------

charge:=tp(2,3)+tp(1,1)/2;

%where tp(n,m) represent the m-th generator of the n-th gauge group 
;end$ 
%%----------------------------------------------------------------------



wang jian xiong 2003-01-10