The following is the input files for Standard Model.
\% ----------------------- File: mode_input -------------------- \\ \% The standard model in unitary gauge \\ algebraic$ %------------------------- Gauge fields ------------------------------- % The first is the gauge field. So in the mode, you must input % how many gauge fields and for each gauge field, declare SU(n) ( we % have just realize SU(n) gauge field in the system), notation for the % field, goupling constant, gauge fix term and gauge parameter ( different % gauge can be chosen by differnet gauge fix term and different gauge % parameter), and you should indicate if the gauge symeetry is breaking % or not. gaugefields:= % No. Name SU(n) notation coupling gaugefixterm gauge_pa breaking '((1 u 1 b g1 gfix1 infinite yes ) (2 su 2 a g gfix2 infinite yes ) (3 su 3 gs g3 gfix3 1 no ) )$ gfix1:=pd(b(v),v)$ gfix2:=pd(a(i1,v),v)$ gfix3:=pd(gs(i1,v),v)$ % where b is the u(1) field, a is the su(2) field and gs is the su(3) field. %---------------------------------------------------------------------- %------------------------ Matter fields -------------------------------- % The second is the matter field. for each matter field, you must input % the name, 2 times spin, chiral ( r --- right, l --- left or r-l % together) and then the gauge group parameter for each gauge group % ( for u(1), it is u(1) charge and for su(n), it is mutiplet number) % matterinput:={{name, 2*spin, chiral, "|g", 1, 2, 3}, { hig, 0 , rl , 1, 2, 0}, { el , 1, l , -1, 2, 0}, { er , 1, r , -2, 0, 0}, { q1l , 1, l , 1/3, 2, 3}, { q1dr, 1, r , -2/3, 0, 3}, { q1ur, 1, r , 4/3, 0, 3} }$ % where: % hig is the Higgs boson doublet with u(1) charge 1 and su(3) singelet. % el is the electron left-hand doublet with u(1) charge -1 and su(3) singelet. % er is the electron right-hand singelet with u(1) charge -2 and su(3) % singelet. % q1l is the first generation quark left-hand doublet with u(1) charge % 1/3 and su(3) triplet. % q1dr is the first generation down quark right-hand singelet with u(1) % charge -2/3 and su(3) triplet. % q1ur is the first generation up quark right-hand singelet with u(1) % charge 4/3 and su(3) triplet. %---------------------------------------------------------------------- %------------------------ Charge list of particles ------------------------ % In fact, The charge of particles can be calculated out by using the % definition of charge and the definition of all the fields. pchalist:={{hig,h0(0)}, %hig field's componet h0 is of charge 0. {el,nue(0),ee(-1)}, %el field's componets nue -- 0, ee -- -1. {er,ee(-1)}, %er field's componet ee is of charge -1. {q1l,qu(2/3),qd(-1/3)}, %q1l's componets qu -- 2/3, qd -- -1/3. {q1ur, qu(2/3)}, %q1ur's componet qu -- 2/3. {q1dr, qd(-1/3)}, %q1dr's componet qd -- -1/3. {a,w(1),w(-1),z(0),p(0)},%a's componets w -- 1, z -- 0, p --0. {b,p(0),z(0)}, %a's componets z -- 0, p --0. {gs,gs(0)} %gs's componet gs -- 0. }; %---------------------------------------------------------------------- %------------------- Definition of mutiplet ------------------------- % % To definition the mutiplet is not a trivial thing in general case, % the definition of vector mutiplets can be done in the following way. % the definition of tensor mutiplet are realized in SU(5) gauge theory % case. % % name n_group 1_componet 2_componet ... mdefl:={{hig, {2, 0 , (v0+h0)/2**0.5}}, {el , {2, nue , ee}}, {er , {2, ee }}, {q1l , {2, qu , qd}}, {q1dr, {2, qd }}, {q1ur, {2, qu }}, {qu, {3, qu(1), qu(2) , qu(3)}}, {qd, {3, qd(1) , qd(2) , qd(3)}} }$ vancumexpectation:='((hig v0)); % where hig is the Higgs doublet for the second gauge group su(2) % and the definition of it's componets are given in unitary gauge. % the vancume expextation of hig is v0 so that in the 2_componet % expression of hig there is only one higgs field h0. % el, q1l are electron and first generation quark left-hand double for % the second gauge field su(2). % er, q1dr and q1ur are electron, first generation down quark and up quark % right-hand singelet for the second gauge field su(2). % the qu, qd which appeared in q1l,q1dr,q1ur componets are triplet for % the third guage field su(3). %------------------------------------------------------------------------- %------------------- Fermion mix ------------------------- % % Definition of Fermion Generation: % Generation is a very useful concept in physical model. We can construct % the lagrangian for only one generation, then add almost the same terms % for the other generation and make some rotations which are caused by % Yukawa coupling or Higgs self-interaction terms. In the following, we % just introduce the definition for fermion generations. % There are three generation quark and lepton in the SM as shown in the % following realfamily:='((q1l q2l q3l) (q1dr q2dr q3dr) (q1ur q2ur q3ur) (qu qc qt) (qd qs qb) (el mul taul) (er mur taur) (ee mu tau) (nue numu nut) ); % where (q1l q2l q3l) is the three generations of left-hand double quark, % (q1dr q2dr q3dr) is the three generations of right-hand singlet down quark, % (q1ur q2ur q3ur) is the three generations of right-hand singlet up quark. % (qu qc qt) and (qd qs qb) are the coressponding componets for the three % generation quarks. % where (el mul taul) is the three generations of left-hand double lepton, % (er mur taur) is the three generations of right-hand singlet lepton, % (ee mu tau) and (nue numu nut) are the coressponding componets for the % three generation leptons. % Mix Matrices: mixlist:='( (l (s1 (qd qs qb)) (s2 (qu qc qt)) (se1 (ee mu tau)) (se1 (nue numu nut)) ) (r (t1 (qd qs qb)) (t2 (qu qc qt)) (te1 (ee mu tau)) ) ); % Definition of CKM Matrix: ] mixlistcondition:={s2(-1)*s1(1)=>v_ckm(1)}; % where the mix matrix for the three left-hand generations are: % mix matrix s1 for (qd qs qb), mix matrix s2 for (qu qc qt), % mix matrix se1 for (ee mu tau) and (nue numu nut). % The reason that the mix matrix of (nue numu nut) can be chosen as % the smae mix matrix of ( ee mu tau) is due to that nue, numu, nut % have the same mass so they can be mixed in any way. The choice of % the same mix matrix se1 for (ee mu tau) and (nue numu nut) make % representation in the simplist way. For eaxmple, If you have a model % with the neutrons (nue numu nut) are of different masses, you must % choose different mix matrices for leptons and neutrons and as a result % that you need to definition CKM matrix for leptons in the above % mixlistcondition. % The mix matrix for the three right-hand generations are: % mix matrix t1 for (qd qs qb), t2 for (qu qc qt) % and te1 for (ee mu tau). %------------------------------------------------------------------------ %-------------------------- Globel Symmetry ------------------------------ % % The third is the globel symmetry of the model, there are lepton number % conservation as globel symmetry in Standrad Model and the lepton numbers % are set to each particles in the model. gbsymmetrylist is the globel % symmetry list. gbsymmetrylist:={len,lmuon,ltau}; gbsymmetrydata:={{len, {el,1}, {er,1}}, {lmuon,{mul,1}, {mur,1}}, {ltau, {taul,1}, {taur,1}}}$ % where globel symmetry number len are 1 for el and 1 for er, % globel symmetry number lmuon are 1 for mul and 1 for mur, % globel symmetry number ltau are 1 for taul and 1 for taur. % In the system, it is supposed that the lepton number of particles % which do not appeared in each lepton number table in the gbsymmetrydata % are set to zero and all the globel symmetry numbers for anti-particles % are set to the minus times that of the particles. %---------------------------------------------------------------------- %-------------------- Masses and Other Paramters ------------------------ % The names of masses of all the particles are given in the following % table phymass and all the zero mass particles are also set it's mass % to zero in the table. phymass:={{w, wm}, {z, zm}, {p, 0}, {h0, hm}, {ee, fme},{nue, 0}, {mu, fmmu},{numu, 0}, {tau, fmtau},{nut, 0}, {qd, fmd}, {qu, fmu}, {qs, fms}, {qc, fmc}, {qb, fmb}, {qt, fmt} }$ % The parameter set are chosen in table phyinput and this set is used % as physical input of the model, or it can be called as the choice of scheme. % To change scheme, your can choose different physical input in the table. % For eaxmple, to use Z boson's mass zm instead of the w boson's mass wm, % to use electronic coupling g1 instead of sin(thta), for this propose, % the relation of g1,g and thta in the paramters relation table construles % should be changed. phyinput:={wm, hm, g, sin(thta), fme, fmmu, fmtau, fmd, fmu, fms, fmc, fmb, fmt }$ % ----------------- Mix of vector boson ----------------------- % mixrules:={ a(1,~v) => (w(1,v)+w(-1,v))/2**0.5, a(2,~v) => (w(-1,v)-w(1,v))/2**0.5/i, a(3,~v) => z(0,v), b(~v) => p(0,v) }; bosonmix:='((sxpz p z)); %----------------------------------------------------------------- % ----------------- Mix of Higgs boson ----------------------- % The mix of Higgs boson will appeared in the model with more than % one Higgs mutiplet. For eaxmple, in the two Higgs doublet model. %----------------------------------------------------------------- % ------------ Mix of Higgs boson and vector boson ------------- % The mix of Higgs boson and vector boson is required to be cancelled % by some terms appeared in the gauge fix terms and the system will % automatically add these terms to the gauge fix term given in above % gauge fields section. %----------------------------------------------------------------- % --------- Mix Matrices of Higgs boson and vector boson--------- matrixlist:={ {sxpz,{cos(thta),sin(thta)},{-sin(thta),cos(thta)}} }; %where matrixlist is the list of all the boson mix matrices. the %mix angle thta of photon and Z boson is introduce the it's mix %matrix expression. %----------------------------------------------------------------- % --------- To solve parameter relations--------- % it is obvious that not all the parameters appeared in the model are % indepandent and some of them should be expressed by others. In the % following, there are two way to choose which parameters should be % expressed by others. One is to put the expressions of the parameters % into the list construles and another is to put the parameters in the % list mixfix, then the system will give the expression when it deal the % mix of particles. mixfix:={}; construles:={ g1=>g*sin(thta)/cos(thta) }; % The following is the another way. %mixfix:={g1}; %construles:={ }; % %---------------------------------------------------------------------- %---------------------- The charge definition -------------------------- charge:=tp(2,3)+tp(1,1)/2; %where tp(n,m) represent the m-th generator of the n-th gauge group ;end$ %%----------------------------------------------------------------------