$K_2[1820]^+$ Two Body Decay Vertices(116)

There are 116 vertices in this part

Vertex 117: $K^-({p_3})~-f_2[1270]^{0}_{\alpha ,\beta }~({p_2})~-K_2[1820]^+
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{117}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5877}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5876}
)
\end{eqnarray*}


Vertex 118: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta }~
({p_2})~-K^+({p_3})~$

\begin{eqnarray*}
&V_{118}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5877}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5876}
)
\end{eqnarray*}


Vertex 119: $K^-({p_3})~-a_2[1320]^{0}_{\alpha ,\beta }~({p_2})~-K_2[1820]^+
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{119}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5874}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5873}
)
\end{eqnarray*}


Vertex 120: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_2[1320]^{0}_{\alpha ,\beta }~
({p_2})~-K^+({p_3})~$

\begin{eqnarray*}
&V_{120}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5874}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5873}
)
\end{eqnarray*}


Vertex 121: $\overline{K^0}({p_3})~-a_2[1320]^-_{\alpha ,\beta }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{121}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5871}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5870}
)
\end{eqnarray*}


Vertex 122: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_2[1320]^+_{\alpha ,\beta }~(
{p_2})~-K^0({p_3})~$

\begin{eqnarray*}
&V_{122}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5871}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5870}
)
\end{eqnarray*}


Vertex 123: $Ks^{0}({p_3})~-a_2[1320]^-_{\alpha ,\beta }~({p_2})~-K_2[1820]^+
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{123}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5868}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5867}
)
\end{eqnarray*}


Vertex 124: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_2[1320]^+_{\alpha ,\beta }~(
{p_2})~-Ks^{0}({p_3})~$

\begin{eqnarray*}
&V_{124}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5868}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5867}
)
\end{eqnarray*}


Vertex 125: $Ks^{0}({p_3})~-a_2[1320]^-_{\alpha ,\beta }~({p_2})~-K_2[1820]^+
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{125}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5865}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5864}
)
\end{eqnarray*}


Vertex 126: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_2[1320]^+_{\alpha ,\beta }~(
{p_2})~-Ks^{0}({p_3})~$

\begin{eqnarray*}
&V_{126}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5865}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5864}
)
\end{eqnarray*}


Vertex 127: $Kl^{0}({p_3})~-a_2[1320]^-_{\alpha ,\beta }~({p_2})~-K_2[1820]^+
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{127}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5862}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5861}
)
\end{eqnarray*}


Vertex 128: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_2[1320]^+_{\alpha ,\beta }~(
{p_2})~-Kl^{0}({p_3})~$

\begin{eqnarray*}
&V_{128}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5862}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5861}
)
\end{eqnarray*}


Vertex 129: $Kl^{0}({p_3})~-a_2[1320]^-_{\alpha ,\beta }~({p_2})~-K_2[1820]^+
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{129}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5859}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5858}
)
\end{eqnarray*}


Vertex 130: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_2[1320]^+_{\alpha ,\beta }~(
{p_2})~-Kl^{0}({p_3})~$

\begin{eqnarray*}
&V_{130}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5859}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5858}
)
\end{eqnarray*}


Vertex 131: $\pi^-({p_3})~-\overline{K^{*}_2[1430]}_{\alpha ,\beta }~({p_2})~
-K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{131}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5853}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5852}
)
\end{eqnarray*}


Vertex 132: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}_2[1430]_{\alpha ,\beta }~
({p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{132}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
..._{\nu ,\beta }f_{5853}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{5852}
)
\end{eqnarray*}


Vertex 133: $\pi^0({p_3})~-K_2[1580]^-_{\alpha ,\beta }~({p_2})~-K_2[1820]^+
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{133}=\epsilon_{{p_1},{p_2},\mu ,\alpha }gi~({p_1}_\beta {p_2}_\nu f_{5851}
+g_{\nu ,\beta }f_{5850})
\end{eqnarray*}


Vertex 134: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_2[1580]^+_{\alpha ,\beta }~(
{p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{134}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }gi~({p_1}_\beta {p_2}_\nu
f_{5851}+g_{\nu ,\beta }f_{5850})
\end{eqnarray*}


Vertex 135: $\gamma^{0}_{\beta }~({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{135}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu \epsi...
...5}-2g_{\nu ,\beta }\epsilon_{{p_1},
{p_3},\mu ,\alpha }f_{4306})
\end{eqnarray*}


Vertex 136: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{136}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu \epsil...
...5}+2g_{\nu ,\beta }\epsilon_{{p_1},
{p_3},\mu ,\alpha }f_{4306})
\end{eqnarray*}


Vertex 137: $\rho[770]^0_{\beta }~({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{137}=gi~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...04}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,
\beta }f_{4301})
\end{eqnarray*}


Vertex 138: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~
-\rho[770]^0_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{138}=-gi~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alph...
...04}+g_{\nu ,\alpha }\epsilon_{{p_1},
{p_2},\mu ,\beta }f_{4301})
\end{eqnarray*}


Vertex 139: $\omega[782]^{0}_{\beta }~({p_3})~-K^{*}[892]^-_{\alpha }~({p_2}
)~-K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{139}=gi~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...00}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,
\beta }f_{4297})
\end{eqnarray*}


Vertex 140: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{140}=-gi~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alph...
...00}+g_{\nu ,\alpha }\epsilon_{{p_1},
{p_2},\mu ,\beta }f_{4297})
\end{eqnarray*}


Vertex 141: $\rho[770]^-_{\beta }~({p_3})~-\overline{K^{*}[892]^0}_{\alpha }~
({p_2})~-K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{141}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...96}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,
\beta }f_{4293})
\end{eqnarray*}


Vertex 142: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^0_{\alpha }~({p_2})~
-\rho[770]^+_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{142}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...96}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,
\beta }f_{4293})
\end{eqnarray*}


Vertex 143: $\gamma^{0}_{\beta }~({p_3})~-K_1[1270]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{143}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}...
...beta }
f_{4291}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{4291})
\end{eqnarray*}


Vertex 144: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1270]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{144}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_...
...beta }
f_{4291}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{4291})
\end{eqnarray*}


Vertex 145: $\gamma^{0}_{\beta }~({p_3})~-K_1[1400]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{145}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}...
...beta }
f_{4288}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{4288})
\end{eqnarray*}


Vertex 146: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1400]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{146}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_...
...beta }
f_{4288}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{4288})
\end{eqnarray*}


Vertex 147: $\gamma^{0}_{\beta }~({p_3})~-K^{*}[1410]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{147}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu \epsi...
...4}-2g_{\nu ,\beta }\epsilon_{{p_1},
{p_3},\mu ,\alpha }f_{4285})
\end{eqnarray*}


Vertex 148: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[1410]^+_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{148}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu \epsil...
...4}+2g_{\nu ,\beta }\epsilon_{{p_1},
{p_3},\mu ,\alpha }f_{4285})
\end{eqnarray*}


Vertex 149: $\gamma^{0}_{\beta }~({p_3})~-K_1[1650]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{149}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}...
...beta }
f_{4282}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{4282})
\end{eqnarray*}


Vertex 150: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1650]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{150}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_...
...beta }
f_{4282}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{4282})
\end{eqnarray*}


Vertex 151: $K^-({p_3})~-\gamma^{0}_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,\nu
}~({p_1})~$

\begin{eqnarray*}
&V_{151}={\displaystyle{f_{3282}g \over 2}}~(-{p_1}^2{p_2}_\n...
...}_\alpha {p_2}_\mu {p_2}_\nu +{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 152: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\gamma^{0}_{\alpha }~({p_2})~-
K^+({p_3})~$

\begin{eqnarray*}
&V_{152}={\displaystyle{f_{3282}g \over 2}}~({p_1}^2{p_2}_\nu...
...}_\alpha {p_2}_\mu {p_2}_\nu -{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 153: $K[1460]^-({p_3})~-\gamma^{0}_{\alpha }~({p_2})~-K_2[1820]^+_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{153}={\displaystyle{f_{3281}g \over 2}}~(-{p_1}^2{p_2}_\n...
...}_\alpha {p_2}_\mu {p_2}_\nu +{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 154: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\gamma^{0}_{\alpha }~({p_2})~-
K[1460]^+({p_3})~$

\begin{eqnarray*}
&V_{154}={\displaystyle{f_{3281}g \over 2}}~({p_1}^2{p_2}_\nu...
...}_\alpha {p_2}_\mu {p_2}_\nu -{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 155: $K^-({p_3})~-\rho[770]^0_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{155}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3279}+{p_2}_\mu g_{\nu ,
\alpha }f_{3278})
\end{eqnarray*}


Vertex 156: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\rho[770]^0_{\alpha }~({p_2})~-
K^+({p_3})~$

\begin{eqnarray*}
&V_{156}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3279}+{p_2}_\mu g_{\nu ,
\alpha }f_{3278})
\end{eqnarray*}


Vertex 157: $\overline{K^0}({p_3})~-\rho[770]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{157}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3277}+{p_2}_\mu g_{\nu ,
\alpha }f_{3276})
\end{eqnarray*}


Vertex 158: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\rho[770]^+_{\alpha }~({p_2})~-
K^0({p_3})~$

\begin{eqnarray*}
&V_{158}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3277}+{p_2}_\mu g_{\nu ,
\alpha }f_{3276})
\end{eqnarray*}


Vertex 159: $Ks^{0}({p_3})~-\rho[770]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{159}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3275}+{p_2}_\mu g_{\nu ,
\alpha }f_{3274})
\end{eqnarray*}


Vertex 160: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\rho[770]^+_{\alpha }~({p_2})~-
Ks^{0}({p_3})~$

\begin{eqnarray*}
&V_{160}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3275}+{p_2}_\mu g_{\nu ,
\alpha }f_{3274})
\end{eqnarray*}


Vertex 161: $Ks^{0}({p_3})~-\rho[770]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{161}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3273}+{p_2}_\mu g_{\nu ,
\alpha }f_{3272})
\end{eqnarray*}


Vertex 162: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\rho[770]^+_{\alpha }~({p_2})~-
Ks^{0}({p_3})~$

\begin{eqnarray*}
&V_{162}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3273}+{p_2}_\mu g_{\nu ,
\alpha }f_{3272})
\end{eqnarray*}


Vertex 163: $Kl^{0}({p_3})~-\rho[770]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{163}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3271}+{p_2}_\mu g_{\nu ,
\alpha }f_{3270})
\end{eqnarray*}


Vertex 164: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\rho[770]^+_{\alpha }~({p_2})~-
Kl^{0}({p_3})~$

\begin{eqnarray*}
&V_{164}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3271}+{p_2}_\mu g_{\nu ,
\alpha }f_{3270})
\end{eqnarray*}


Vertex 165: $Kl^{0}({p_3})~-\rho[770]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{165}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3269}+{p_2}_\mu g_{\nu ,
\alpha }f_{3268})
\end{eqnarray*}


Vertex 166: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\rho[770]^+_{\alpha }~({p_2})~-
Kl^{0}({p_3})~$

\begin{eqnarray*}
&V_{166}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3269}+{p_2}_\mu g_{\nu ,
\alpha }f_{3268})
\end{eqnarray*}


Vertex 167: $K^-({p_3})~-\omega[782]^{0}_{\alpha }~({p_2})~-K_2[1820]^+_{\mu
,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{167}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3267}+{p_2}_\mu g_{\nu ,
\alpha }f_{3266})
\end{eqnarray*}


Vertex 168: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-K^+({p_3})~$

\begin{eqnarray*}
&V_{168}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3267}+{p_2}_\mu g_{\nu ,
\alpha }f_{3266})
\end{eqnarray*}


Vertex 169: $K^-({p_3})~-\phi[1020]^{0}_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{169}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3265}+{p_2}_\mu g_{\nu ,
\alpha }f_{3264})
\end{eqnarray*}


Vertex 170: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~({p_2}
)~-K^+({p_3})~$

\begin{eqnarray*}
&V_{170}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3265}+{p_2}_\mu g_{\nu ,
\alpha }f_{3264})
\end{eqnarray*}


Vertex 171: $K^-({p_3})~-h_1[1170]^{0}_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{171}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3263}g~{p_2}_\nu
\end{eqnarray*}


Vertex 172: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-K^+({p_3})~$

\begin{eqnarray*}
&V_{172}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3263}g~{p_2}_\nu
\end{eqnarray*}


Vertex 173: $K^-({p_3})~-b_1[1235]^0_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{173}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3262}g~{p_2}_\nu
\end{eqnarray*}


Vertex 174: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-b_1[1235]^0_{\alpha }~({p_2})~-
K^+({p_3})~$

\begin{eqnarray*}
&V_{174}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3262}g~{p_2}_\nu
\end{eqnarray*}


Vertex 175: $\overline{K^0}({p_3})~-b_1[1235]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{175}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3261}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 176: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-b_1[1235]^+_{\alpha }~({p_2})~-
K^0({p_3})~$

\begin{eqnarray*}
&V_{176}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3261}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 177: $Ks^{0}({p_3})~-b_1[1235]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{177}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3260}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 178: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-b_1[1235]^+_{\alpha }~({p_2})~-
Ks^{0}({p_3})~$

\begin{eqnarray*}
&V_{178}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3260}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 179: $Ks^{0}({p_3})~-b_1[1235]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{179}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3259}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 180: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-b_1[1235]^+_{\alpha }~({p_2})~-
Ks^{0}({p_3})~$

\begin{eqnarray*}
&V_{180}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3259}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 181: $Kl^{0}({p_3})~-b_1[1235]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{181}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3258}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 182: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-b_1[1235]^+_{\alpha }~({p_2})~-
Kl^{0}({p_3})~$

\begin{eqnarray*}
&V_{182}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3258}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 183: $Kl^{0}({p_3})~-b_1[1235]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{183}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3257}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 184: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-b_1[1235]^+_{\alpha }~({p_2})~-
Kl^{0}({p_3})~$

\begin{eqnarray*}
&V_{184}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3257}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 185: $K^-({p_3})~-a_1[1260]^0_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{185}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3256}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 186: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_1[1260]^0_{\alpha }~({p_2})~-
K^+({p_3})~$

\begin{eqnarray*}
&V_{186}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3256}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 187: $\overline{K^0}({p_3})~-a_1[1260]^0_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{187}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3255}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 188: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_1[1260]^0_{\alpha }~({p_2})~-
K^0({p_3})~$

\begin{eqnarray*}
&V_{188}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3255}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 189: $Ks^{0}({p_3})~-a_1[1260]^0_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{189}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3254}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 190: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_1[1260]^0_{\alpha }~({p_2})~-
Ks^{0}({p_3})~$

\begin{eqnarray*}
&V_{190}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3254}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 191: $Ks^{0}({p_3})~-a_1[1260]^0_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{191}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3253}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 192: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_1[1260]^0_{\alpha }~({p_2})~-
Ks^{0}({p_3})~$

\begin{eqnarray*}
&V_{192}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3253}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 193: $Kl^{0}({p_3})~-a_1[1260]^0_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{193}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3252}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 194: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_1[1260]^0_{\alpha }~({p_2})~-
Kl^{0}({p_3})~$

\begin{eqnarray*}
&V_{194}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3252}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 195: $Kl^{0}({p_3})~-a_1[1260]^0_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{195}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3251}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 196: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_1[1260]^0_{\alpha }~({p_2})~-
Kl^{0}({p_3})~$

\begin{eqnarray*}
&V_{196}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3251}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 197: $K^-({p_3})~-f_1[1285]^{0}_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{197}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3250}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 198: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-f_1[1285]^{0}_{\alpha }~({p_2}
)~-K^+({p_3})~$

\begin{eqnarray*}
&V_{198}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3250}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 199: $\pi^0({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{199}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3249}+{p_2}_\mu g_{\nu ,
\alpha }f_{3248})
\end{eqnarray*}


Vertex 200: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~
-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{200}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3249}+{p_2}_\mu g_{\nu ,
\alpha }f_{3248})
\end{eqnarray*}


Vertex 201: $\eta^{0}({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-K_2[1820]^+_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{201}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3247}+{p_2}_\mu g_{\nu ,
\alpha }f_{3246})
\end{eqnarray*}


Vertex 202: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~
-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{202}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3247}+{p_2}_\mu g_{\nu ,
\alpha }f_{3246})
\end{eqnarray*}


Vertex 203: $f_0[600]^{0}({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-K_2[1820]^+
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{203}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3245}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 204: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~
-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{204}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3245}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 205: $\pi^-({p_3})~-\overline{K^{*}[892]^0}_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{205}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3242}+{p_2}_\mu g_{\nu ,
\alpha }f_{3241})
\end{eqnarray*}


Vertex 206: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^0_{\alpha }~({p_2})~
-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{206}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3242}+{p_2}_\mu g_{\nu ,
\alpha }f_{3241})
\end{eqnarray*}


Vertex 207: $\pi^0({p_3})~-K_1[1270]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{207}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3240}g~{p_2}_\nu
\end{eqnarray*}


Vertex 208: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1270]^+_{\alpha }~({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{208}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3240}g~{p_2}_\nu
\end{eqnarray*}


Vertex 209: $\pi^0({p_3})~-K_1[1400]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{209}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3239}g~{p_2}_\nu
\end{eqnarray*}


Vertex 210: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1400]^+_{\alpha }~({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{210}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3239}g~{p_2}_\nu
\end{eqnarray*}


Vertex 211: $\pi^0({p_3})~-K^{*}[1410]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu
,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{211}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3238}+{p_2}_\mu g_{\nu ,
\alpha }f_{3237})
\end{eqnarray*}


Vertex 212: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[1410]^+_{\alpha }~({p_2}
)~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{212}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{3238}+{p_2}_\mu g_{\nu ,
\alpha }f_{3237})
\end{eqnarray*}


Vertex 213: $\pi^0({p_3})~-K_1[1650]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{213}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3236}g~{p_2}_\nu
\end{eqnarray*}


Vertex 214: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1650]^+_{\alpha }~({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{214}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{3236}g~{p_2}_\nu
\end{eqnarray*}


Vertex 215: $K^-({p_3})~-f_0[600]^{0}({p_2})~-K_2[1820]^+_{\mu ,\nu }~({p_1}
)~$

\begin{eqnarray*}
&V_{215}=f_{2067}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 216: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-f_0[600]^{0}({p_2})~-K^+({p_3}
)~$

\begin{eqnarray*}
&V_{216}=f_{2067}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 217: $K^-({p_3})~-f_0[980]^{0}({p_2})~-K_2[1820]^+_{\mu ,\nu }~({p_1}
)~$

\begin{eqnarray*}
&V_{217}=f_{2066}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 218: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-f_0[980]^{0}({p_2})~-K^+({p_3}
)~$

\begin{eqnarray*}
&V_{218}=f_{2066}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 219: $K^-({p_3})~-a_0[980]^0({p_2})~-K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{219}=f_{2065}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 220: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_0[980]^0({p_2})~-K^+({p_3})~$

\begin{eqnarray*}
&V_{220}=f_{2065}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 221: $\overline{K^0}({p_3})~-a_0[980]^-({p_2})~-K_2[1820]^+_{\mu ,\nu
}~({p_1})~$

\begin{eqnarray*}
&V_{221}=f_{2064}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 222: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-a_0[980]^+({p_2})~-K^0({p_3})~$

\begin{eqnarray*}
&V_{222}=f_{2064}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 223: $a_0[980]^-({p_3})~-Ks^{0}({p_2})~-K_2[1820]^+_{\mu ,\nu }~({p_1}
)~$

\begin{eqnarray*}
&V_{223}=f_{2062}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 224: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-Ks^{0}({p_2})~-a_0[980]^+({p_3}
)~$

\begin{eqnarray*}
&V_{224}=f_{2062}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 225: $a_0[980]^-({p_3})~-Ks^{0}({p_2})~-K_2[1820]^+_{\mu ,\nu }~({p_1}
)~$

\begin{eqnarray*}
&V_{225}=f_{2061}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 226: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-Ks^{0}({p_2})~-a_0[980]^+({p_3}
)~$

\begin{eqnarray*}
&V_{226}=f_{2061}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 227: $a_0[980]^-({p_3})~-Kl^{0}({p_2})~-K_2[1820]^+_{\mu ,\nu }~({p_1}
)~$

\begin{eqnarray*}
&V_{227}=f_{2060}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 228: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-Kl^{0}({p_2})~-a_0[980]^+({p_3}
)~$

\begin{eqnarray*}
&V_{228}=f_{2060}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 229: $a_0[980]^-({p_3})~-Kl^{0}({p_2})~-K_2[1820]^+_{\mu ,\nu }~({p_1}
)~$

\begin{eqnarray*}
&V_{229}=f_{2059}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 230: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-Kl^{0}({p_2})~-a_0[980]^+({p_3}
)~$

\begin{eqnarray*}
&V_{230}=f_{2059}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 231: $\pi^-({p_3})~-\overline{K^{*}_0[1430]}({p_2})~-K_2[1820]^+_{\mu
,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{231}=f_{2058}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 232: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}_0[1430]({p_2})~-\pi^+(
{p_3})~$

\begin{eqnarray*}
&V_{232}=f_{2058}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}