$\Delta[2150][+1]$ Two Body Decay Vertices(58)

There are 58 vertices in this part

Vertex 59: $\gamma^{0}_{\beta }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
N[1990]^+({p_1})~$

\begin{eqnarray*}
&V_{59}=g~(- \sqrt{{p_1}^2}{p_3}_\nu {p_3}_\alpha g_{\mu ,\be...
...f_{891}+\gamma_\beta {p_3}_\mu
{p_3}_\nu {p_3}_\alpha f_{892}i)
\end{eqnarray*}


Vertex 60: $N[1990]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\beta }~(
{p_3})~$

\begin{eqnarray*}
&V_{60}=g~( \sqrt{{p_1}^2}{p_3}_\nu {p_3}_\alpha g_{\mu ,\bet...
...f_{891}+\gamma_\beta {p_3}_\mu
{p_3}_\nu {p_3}_\alpha f_{892}i)
\end{eqnarray*}


Vertex 61: $\gamma^{0}_{\beta }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
\Delta[1950][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{61}=g~(- \sqrt{{p_1}^2}{p_3}_\nu {p_3}_\alpha g_{\mu ,\be...
...f_{864}+\gamma_\beta {p_3}_\mu
{p_3}_\nu {p_3}_\alpha f_{865}i)
\end{eqnarray*}


Vertex 62: $\Delta[1950][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\beta }~({p_3})~$

\begin{eqnarray*}
&V_{62}=g~( \sqrt{{p_1}^2}{p_3}_\nu {p_3}_\alpha g_{\mu ,\bet...
...f_{864}+\gamma_\beta {p_3}_\mu
{p_3}_\nu {p_3}_\alpha f_{865}i)
\end{eqnarray*}


Vertex 63: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~
-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{63}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{608}i-...
...3}_\nu f_{607} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{608}i)
\end{eqnarray*}


Vertex 64: $N[1675]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{64}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{608}i-...
...3}_\nu f_{607} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{608}i)
\end{eqnarray*}


Vertex 65: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~
-N[1680]^+({p_1})~$

\begin{eqnarray*}
&V_{65}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{580}i)
\end{eqnarray*}


Vertex 66: $N[1680]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{66}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{580}i)
\end{eqnarray*}


Vertex 67: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~
-N[2000]^+({p_1})~$

\begin{eqnarray*}
&V_{67}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{553}i)
\end{eqnarray*}


Vertex 68: $N[2000]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{68}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{553}i)
\end{eqnarray*}


Vertex 69: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~
-\Delta[1905][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{69}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{526}i)
\end{eqnarray*}


Vertex 70: $\Delta[1905][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{70}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{526}i)
\end{eqnarray*}


Vertex 71: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~
-\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{71}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{500}i-...
...3}_\nu f_{499} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{500}i)
\end{eqnarray*}


Vertex 72: $\Delta[1930][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{72}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{500}i-...
...3}_\nu f_{499} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{500}i)
\end{eqnarray*}


Vertex 73: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~
-\Delta[2000][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{73}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{472}i)
\end{eqnarray*}


Vertex 74: $\Delta[2000][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{74}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{472}i)
\end{eqnarray*}


Vertex 75: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
N[1520]^+({p_1})~$

\begin{eqnarray*}
&V_{75}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{430}-\...
...nu }f_{429}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{429}i)
\end{eqnarray*}


Vertex 76: $N[1520]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{76}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{430}-\...
...nu }f_{429}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{429}i)
\end{eqnarray*}


Vertex 77: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
N[1700]^+({p_1})~$

\begin{eqnarray*}
&V_{77}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{403}-\...
...nu }f_{402}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{402}i)
\end{eqnarray*}


Vertex 78: $N[1700]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{78}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{403}-\...
...nu }f_{402}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{402}i)
\end{eqnarray*}


Vertex 79: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
N[1720]^+({p_1})~$

\begin{eqnarray*}
&V_{79}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{376}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{375}+\gamma_\nu {p_3}_\mu f_{376}i)
\end{eqnarray*}


Vertex 80: $N[1720]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{80}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{376}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{375}+\gamma_\nu {p_3}_\mu f_{376}i)
\end{eqnarray*}


Vertex 81: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
N[1900]^+({p_1})~$

\begin{eqnarray*}
&V_{81}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{349}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{348}+\gamma_\nu {p_3}_\mu f_{349}i)
\end{eqnarray*}


Vertex 82: $N[1900]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{82}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{349}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{348}+\gamma_\nu {p_3}_\mu f_{349}i)
\end{eqnarray*}


Vertex 83: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
N[2080]^+({p_1})~$

\begin{eqnarray*}
&V_{83}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{322}-\...
...nu }f_{321}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{321}i)
\end{eqnarray*}


Vertex 84: $N[2080]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{84}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{322}-\...
...nu }f_{321}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{321}i)
\end{eqnarray*}


Vertex 85: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
\Delta[1232][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{85}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{277}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{276}+\gamma_\nu {p_3}_\mu f_{277}i)
\end{eqnarray*}


Vertex 86: $\Delta[1232][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{86}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{277}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{276}+\gamma_\nu {p_3}_\mu f_{277}i)
\end{eqnarray*}


Vertex 87: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
\Delta[1600][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{87}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{247}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{246}+\gamma_\nu {p_3}_\mu f_{247}i)
\end{eqnarray*}


Vertex 88: $\Delta[1600][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{88}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{247}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{246}+\gamma_\nu {p_3}_\mu f_{247}i)
\end{eqnarray*}


Vertex 89: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
\Delta[1700][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{89}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{220}-\...
...nu }f_{219}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{219}i)
\end{eqnarray*}


Vertex 90: $\Delta[1700][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{90}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{220}-\...
...nu }f_{219}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{219}i)
\end{eqnarray*}


Vertex 91: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
\Delta[1920][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{91}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{193}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{192}+\gamma_\nu {p_3}_\mu f_{193}i)
\end{eqnarray*}


Vertex 92: $\Delta[1920][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{92}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{193}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{192}+\gamma_\nu {p_3}_\mu f_{193}i)
\end{eqnarray*}


Vertex 93: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[2150][+1]}({p_2})~-
\Delta[1940][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{93}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{166}-\...
...nu }f_{165}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{165}i)
\end{eqnarray*}


Vertex 94: $\Delta[1940][+1]^-({p_1})~-\Delta[2150][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{94}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{166}-\...
...nu }f_{165}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{165}i)
\end{eqnarray*}


Vertex 95: $\gamma^{0}_{\mu }~({p_3})~-\overline{P}({p_2})~-\Delta[2150][+1](
{p_1})~$

\begin{eqnarray*}
&V_{95}=f_{59}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 96: $\overline{\Delta[2150][+1]}({p_1})~-P({p_2})~-\gamma^{0}_{\mu }~(
{p_3})~$

\begin{eqnarray*}
&V_{96}=f_{59}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 97: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1440]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{97}=f_{56}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 98: $\overline{\Delta[2150][+1]}({p_1})~-N[1440]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{98}=f_{56}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 99: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1535]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{99}=f_{55}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 100: $\overline{\Delta[2150][+1]}({p_1})~-N[1535]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{100}=f_{55}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 101: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1650]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{101}=f_{54}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 102: $\overline{\Delta[2150][+1]}({p_1})~-N[1650]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{102}=f_{54}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 103: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1710]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{103}=f_{53}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 104: $\overline{\Delta[2150][+1]}({p_1})~-N[1710]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{104}=f_{53}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 105: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[2090]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{105}=f_{52}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 106: $\overline{\Delta[2150][+1]}({p_1})~-N[2090]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{106}=f_{52}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 107: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[2100]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{107}=f_{51}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 108: $\overline{\Delta[2150][+1]}({p_1})~-N[2100]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{108}=f_{51}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 109: $\gamma^{0}_{\mu }~({p_3})~-\overline{\Delta[1620][+1]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{109}=f_{50}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 110: $\overline{\Delta[2150][+1]}({p_1})~-\Delta[1620][+1]({p_2})~-
\gamma^{0}_{\mu }~({p_3})~$

\begin{eqnarray*}
&V_{110}=f_{50}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 111: $\gamma^{0}_{\mu }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{111}=f_{49}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 112: $\overline{\Delta[2150][+1]}({p_1})~-\Delta[1750][+1]({p_2})~-
\gamma^{0}_{\mu }~({p_3})~$

\begin{eqnarray*}
&V_{112}=f_{49}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 113: $\gamma^{0}_{\mu }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{113}=f_{48}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 114: $\overline{\Delta[2150][+1]}({p_1})~-\Delta[1900][+1]({p_2})~-
\gamma^{0}_{\mu }~({p_3})~$

\begin{eqnarray*}
&V_{114}=f_{48}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 115: $\gamma^{0}_{\mu }~({p_3})~-\overline{\Delta[1910][+1]}({p_2})~-
\Delta[2150][+1]({p_1})~$

\begin{eqnarray*}
&V_{115}=f_{47}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 116: $\overline{\Delta[2150][+1]}({p_1})~-\Delta[1910][+1]({p_2})~-
\gamma^{0}_{\mu }~({p_3})~$

\begin{eqnarray*}
&V_{116}=f_{47}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}