$K_2[1580]^+$ Two Body Decay Vertices(18)

There are 18 vertices in this part

Vertex 19: $\gamma^{0}_{\beta }~({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-
K_2[1580]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{19}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu \epsil...
...25}-2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{826})
\end{eqnarray*}


Vertex 20: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{20}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu \epsilo...
...25}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{826})
\end{eqnarray*}


Vertex 21: $\gamma^{0}_{\beta }~({p_3})~-K_1[1270]^-_{\alpha }~({p_2})~-
K_2[1580]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{21}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}_...
...,\beta }
f_{823}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{823})
\end{eqnarray*}


Vertex 22: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-K_1[1270]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{22}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{823}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{823})
\end{eqnarray*}


Vertex 23: $\gamma^{0}_{\beta }~({p_3})~-K_1[1400]^-_{\alpha }~({p_2})~-
K_2[1580]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{23}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}_...
...,\beta }
f_{820}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{820})
\end{eqnarray*}


Vertex 24: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-K_1[1400]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{24}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{820}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{820})
\end{eqnarray*}


Vertex 25: $\gamma^{0}_{\beta }~({p_3})~-K^{*}[1410]^-_{\alpha }~({p_2})~-
K_2[1580]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{25}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu \epsil...
...16}-2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{817})
\end{eqnarray*}


Vertex 26: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-K^{*}[1410]^+_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{26}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu \epsilo...
...16}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{817})
\end{eqnarray*}


Vertex 27: $K^-({p_3})~-\gamma^{0}_{\alpha }~({p_2})~-K_2[1580]^+_{\mu ,\nu
}~({p_1})~$

\begin{eqnarray*}
&V_{27}={\displaystyle{f_{611}g \over 2}}~(-{p_1}^2{p_2}_\nu ...
...}_\alpha {p_2}_\mu {p_2}_\nu +{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 28: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-\gamma^{0}_{\alpha }~({p_2})~-
K^+({p_3})~$

\begin{eqnarray*}
&V_{28}={\displaystyle{f_{611}g \over 2}}~({p_1}^2{p_2}_\nu g...
...}_\alpha {p_2}_\mu {p_2}_\nu -{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 29: $K[1460]^-({p_3})~-\gamma^{0}_{\alpha }~({p_2})~-K_2[1580]^+_{\mu
,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{29}={\displaystyle{f_{610}g \over 2}}~(-{p_1}^2{p_2}_\nu ...
...}_\alpha {p_2}_\mu {p_2}_\nu +{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 30: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-\gamma^{0}_{\alpha }~({p_2})~-
K[1460]^+({p_3})~$

\begin{eqnarray*}
&V_{30}={\displaystyle{f_{610}g \over 2}}~({p_1}^2{p_2}_\nu g...
...}_\alpha {p_2}_\mu {p_2}_\nu -{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 31: $K^-({p_3})~-\omega[782]^{0}_{\alpha }~({p_2})~-K_2[1580]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{31}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{608}+{p_2}_\mu g_{\nu ,\alpha
}f_{607})
\end{eqnarray*}


Vertex 32: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~({p_2}
)~-K^+({p_3})~$

\begin{eqnarray*}
&V_{32}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{608}+{p_2}_\mu g_{\nu ,\alpha }
f_{607})
\end{eqnarray*}


Vertex 33: $K^-({p_3})~-\phi[1020]^{0}_{\alpha }~({p_2})~-K_2[1580]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{33}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{606}+{p_2}_\mu g_{\nu ,\alpha
}f_{605})
\end{eqnarray*}


Vertex 34: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~({p_2}
)~-K^+({p_3})~$

\begin{eqnarray*}
&V_{34}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{606}+{p_2}_\mu g_{\nu ,\alpha }
f_{605})
\end{eqnarray*}


Vertex 35: $\eta^{0}({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-K_2[1580]^+_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{35}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{604}+{p_2}_\mu g_{\nu ,\alpha
}f_{603})
\end{eqnarray*}


Vertex 36: $K_2[1580]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{36}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{604}+{p_2}_\mu g_{\nu ,\alpha
}f_{603})
\end{eqnarray*}