$K^{*}[1410]^+$ Two Body Decay Vertices(12)

There are 12 vertices in this part

Vertex 13: $\gamma^{0}_{\alpha }~({p_3})~-K^{*}[892]^-_{\nu }~({p_2})~-
K^{*}[1410]^+_{\mu }~({p_1})~$

\begin{eqnarray*}
&V_{13}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\mu g_{\nu ,...
..._\mu g_{\nu ,\alpha }f_{488}-2{p_3}_\nu g_{\mu ,\alpha }f_{488})
\end{eqnarray*}


Vertex 14: $K^{*}[1410]^-_{\mu }~({p_1})~-K^{*}[892]^+_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{14}={\displaystyle{g \over 2}}~(-{p_1}^2{p_3}_\mu g_{\nu ...
..._\mu g_{\nu ,\alpha }f_{488}+2{p_3}_\nu g_{\mu ,\alpha }f_{488})
\end{eqnarray*}


Vertex 15: $\gamma^{0}_{\alpha }~({p_3})~-K_1[1270]^-_{\nu }~({p_2})~-
K^{*}[1410]^+_{\mu }~({p_1})~$

\begin{eqnarray*}
&V_{15}={\displaystyle{g \over 2}}~(-{p_1}^2\epsilon_{{p_2},\...
...},\mu ,\nu }f_{487}-2\epsilon_{{p_3},\mu ,\nu ,\alpha }
f_{486})
\end{eqnarray*}


Vertex 16: $K^{*}[1410]^-_{\mu }~({p_1})~-K_1[1270]^+_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{16}={\displaystyle{g \over 2}}~({p_1}^2\epsilon_{{p_2},\m...
...},\mu ,\nu }f_{487}+2\epsilon_{{p_3},\mu ,\nu ,\alpha }
f_{486})
\end{eqnarray*}


Vertex 17: $\gamma^{0}_{\alpha }~({p_3})~-K_1[1400]^-_{\nu }~({p_2})~-
K^{*}[1410]^+_{\mu }~({p_1})~$

\begin{eqnarray*}
&V_{17}={\displaystyle{g \over 2}}~(-{p_1}^2\epsilon_{{p_2},\...
...},\mu ,\nu }f_{485}-2\epsilon_{{p_3},\mu ,\nu ,\alpha }
f_{484})
\end{eqnarray*}


Vertex 18: $K^{*}[1410]^-_{\mu }~({p_1})~-K_1[1400]^+_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{18}={\displaystyle{g \over 2}}~({p_1}^2\epsilon_{{p_2},\m...
...},\mu ,\nu }f_{485}+2\epsilon_{{p_3},\mu ,\nu ,\alpha }
f_{484})
\end{eqnarray*}


Vertex 19: $K^-({p_3})~-\gamma^{0}_{\nu }~({p_2})~-K^{*}[1410]^+_{\mu }~(
{p_1})~$

\begin{eqnarray*}
&V_{19}=\epsilon_{{p_1},{p_2},\mu ,\nu }f_{149}gi
\end{eqnarray*}


Vertex 20: $K^{*}[1410]^-_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-K^+(
{p_3})~$

\begin{eqnarray*}
&V_{20}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{149}gi
\end{eqnarray*}


Vertex 21: $K^-({p_3})~-\omega[782]^{0}_{\nu }~({p_2})~-K^{*}[1410]^+_{\mu }~
({p_1})~$

\begin{eqnarray*}
&V_{21}=\epsilon_{{p_1},{p_2},\mu ,\nu }f_{146}gi
\end{eqnarray*}


Vertex 22: $K^{*}[1410]^-_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-K^+
({p_3})~$

\begin{eqnarray*}
&V_{22}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{146}gi
\end{eqnarray*}


Vertex 23: $\eta^{0}({p_3})~-K^-({p_2})~-K^{*}[1410]^+_{\mu }~({p_1})~$

\begin{eqnarray*}
&V_{23}=f_{40}gi~{p_2}_\mu
\end{eqnarray*}


Vertex 24: $K^{*}[1410]^-_{\mu }~({p_1})~-K^+({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{24}=f_{40}gi~{p_2}_\mu
\end{eqnarray*}