$f_2[2300]^{0}$ Two Body Decay Vertices(42)

There are 42 vertices in this part

Vertex 43: $\pi^-({p_3})~-f_2[2300]^{0}_{\gamma ,\eta }~({p_2})~-a_4[2040] ^+
_{\mu ,\nu ,\alpha ,\beta }~({p_1})~$

\begin{eqnarray*}
&V_{43}=-\epsilon_{{p_1},{p_2},\mu ,\gamma }g~({p_1}_\eta {p_...
..._\beta f_{2031}+{p_2}_\nu {p_2}_\alpha g_{\beta ,\eta }f_{2030})
\end{eqnarray*}


Vertex 44: $a_4[2040] ^-_{\mu ,\nu ,\alpha ,\beta }~({p_1})~-f_2[2300]^{0}_{
\gamma ,\eta }~({p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{44}=-\epsilon_{{p_1},{p_2},\mu ,\gamma }g~({p_1}_\eta {p_...
..._\beta f_{2031}+{p_2}_\nu {p_2}_\alpha g_{\beta ,\eta }f_{2030})
\end{eqnarray*}


Vertex 45: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta
}~({p_2})~-\eta^{'}[958]^{0}({p_3})~$

\begin{eqnarray*}
&V_{45}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{1513}+
g_{\nu ,\beta }f_{1512})
\end{eqnarray*}


Vertex 46: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{46}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{15...
...g_{\nu ,\beta }f_{1510}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1509})
\end{eqnarray*}


Vertex 47: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[980]^{0}({p_3})~$

\begin{eqnarray*}
&V_{47}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{15...
...g_{\nu ,\beta }f_{1507}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1506})
\end{eqnarray*}


Vertex 48: $\pi^-({p_3})~-a_2[1320]^+_{\alpha ,\beta }~({p_2})~-f_2[2300]^{0}
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{48}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{1505}+
g_{\nu ,\beta }f_{1504})
\end{eqnarray*}


Vertex 49: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-a_2[1320]^-_{\alpha ,\beta }~(
{p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{49}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{1505}+
g_{\nu ,\beta }f_{1504})
\end{eqnarray*}


Vertex 50: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1430]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{50}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{15...
...g_{\nu ,\beta }f_{1502}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1501})
\end{eqnarray*}


Vertex 51: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f^{'}_2[1525]^{0}_{\alpha ,
\beta }~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{51}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{15...
...g_{\nu ,\beta }f_{1499}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1498})
\end{eqnarray*}


Vertex 52: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1565]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{52}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{14...
...g_{\nu ,\beta }f_{1496}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1495})
\end{eqnarray*}


Vertex 53: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1640]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{53}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{14...
...g_{\nu ,\beta }f_{1493}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1492})
\end{eqnarray*}


Vertex 54: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\eta_2[1645]^{0}_{\alpha ,
\beta }~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{54}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{1491}+
g_{\nu ,\beta }f_{1490})
\end{eqnarray*}


Vertex 55: $\pi^-({p_3})~-a_2[1700]^+_{\alpha ,\beta }~({p_2})~-f_2[2300]^{0}
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{55}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{1489}+
g_{\nu ,\beta }f_{1488})
\end{eqnarray*}


Vertex 56: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-a_2[1700]^-_{\alpha ,\beta }~(
{p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{56}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{1489}+
g_{\nu ,\beta }f_{1488})
\end{eqnarray*}


Vertex 57: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\rho[770]^-_{\alpha }~({p_2})~
-\rho[770]^+_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{57}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{69...
...}g_{\nu ,\beta }f_{686}+
g_{\mu ,\beta }g_{\nu ,\alpha }f_{686})
\end{eqnarray*}


Vertex 58: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{58}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{684}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{684})
\end{eqnarray*}


Vertex 59: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{59}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{68...
...ha ,\beta }f_{680} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{678})
\end{eqnarray*}


Vertex 60: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{60}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{676}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{676})
\end{eqnarray*}


Vertex 61: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{61}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{67...
...ha ,\beta }f_{672} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{670})
\end{eqnarray*}


Vertex 62: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{62}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{66...
...ha ,\beta }f_{667} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{665})
\end{eqnarray*}


Vertex 63: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{63}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...62}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{663})
\end{eqnarray*}


Vertex 64: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{64}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...661}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{658})
\end{eqnarray*}


Vertex 65: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{65}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...657}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{654})
\end{eqnarray*}


Vertex 66: $\rho[770]^-_{\beta }~({p_3})~-b_1[1235]^+_{\alpha }~({p_2})~-
f_2[2300]^{0}_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{66}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...653}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{650})
\end{eqnarray*}


Vertex 67: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-b_1[1235]^-_{\alpha }~({p_2})~
-\rho[770]^+_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{67}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...653}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{650})
\end{eqnarray*}


Vertex 68: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{68}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...47}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{648})
\end{eqnarray*}


Vertex 69: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~({p_2}
)~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{69}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...646}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{643})
\end{eqnarray*}


Vertex 70: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega[1420]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{70}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{641}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{641})
\end{eqnarray*}


Vertex 71: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega[1420]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{71}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{63...
...ha ,\beta }f_{637} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{635})
\end{eqnarray*}


Vertex 72: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1595]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{72}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...32}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{633})
\end{eqnarray*}


Vertex 73: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega_[1650]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{73}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{630}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{630})
\end{eqnarray*}


Vertex 74: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\phi[1680]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{74}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{627}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{627})
\end{eqnarray*}


Vertex 75: $\pi^-({p_3})~-\pi_1[1400]^+_{\alpha }~({p_2})~-f_2[2300]^{0}_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{75}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{521}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 76: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\pi_1[1400]^-_{\alpha }~({p_2}
)~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{76}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{521}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 77: $\pi^-({p_3})~-\pi_1[1600]^+_{\alpha }~({p_2})~-f_2[2300]^{0}_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{77}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{520}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 78: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\pi_1[1600]^-_{\alpha }~({p_2}
)~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{78}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{520}gi~{p_2}_\nu
\end{eqnarray*}


Vertex 79: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\pi^-({p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{79}=f_{370}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 80: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\eta^{'}[958]^{0}({p_2})~-
\eta^{'}[958]^{0}({p_3})~$

\begin{eqnarray*}
&V_{80}=f_{369}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 81: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_0[600]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{81}=f_{368}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 82: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_0[980]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{82}=f_{367}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 83: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_0[980]^{0}({p_2})~-
f_0[980]^{0}({p_3})~$

\begin{eqnarray*}
&V_{83}=f_{366}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 84: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_0[1370]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{84}=f_{365}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}