$\eta_2[1870]^{0}$ Two Body Decay Vertices(20)

There are 20 vertices in this part

Vertex 21: $\pi^-({p_3})~-a_2[1320]^+_{\alpha ,\beta }~({p_2})~-
\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{21}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{15...
...g_{\nu ,\beta }f_{1549}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1548})
\end{eqnarray*}


Vertex 22: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-a_2[1320]^-_{\alpha ,\beta
}~({p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{22}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{15...
...g_{\nu ,\beta }f_{1549}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1548})
\end{eqnarray*}


Vertex 23: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\rho[770]^-_{\alpha }~(
{p_2})~-\rho[770]^+_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{23}=g~(-{p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...{967}+g_{\nu ,\beta }\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{967})
\end{eqnarray*}


Vertex 24: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{24}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...64}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{965})
\end{eqnarray*}


Vertex 25: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{25}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...963}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{960})
\end{eqnarray*}


Vertex 26: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{26}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...57}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{958})
\end{eqnarray*}


Vertex 27: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{27}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...956}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{953})
\end{eqnarray*}


Vertex 28: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{28}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{951}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{951})
\end{eqnarray*}


Vertex 29: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{29}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{948}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{948})
\end{eqnarray*}


Vertex 30: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\omega[1420]^{0}_{\alpha }~
({p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{30}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...44}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{945})
\end{eqnarray*}


Vertex 31: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-h_1[1595]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{31}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{942}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{942})
\end{eqnarray*}


Vertex 32: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\omega_[1650]^{0}_{\alpha
}~({p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{32}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...38}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{939})
\end{eqnarray*}


Vertex 33: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\phi[1680]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{33}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...35}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{936})
\end{eqnarray*}


Vertex 34: $\pi^-({p_3})~-\pi_1[1400]^+_{\alpha }~({p_2})~-\eta_2[1870]^{0}_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{34}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{533}+{p_2}_\mu g_{\nu ,\alpha
}f_{532})
\end{eqnarray*}


Vertex 35: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\pi_1[1400]^-_{\alpha }~(
{p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{35}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{533}+{p_2}_\mu g_{\nu ,\alpha
}f_{532})
\end{eqnarray*}


Vertex 36: $\pi^-({p_3})~-\pi_1[1600]^+_{\alpha }~({p_2})~-\eta_2[1870]^{0}_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{36}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{531}+{p_2}_\mu g_{\nu ,\alpha
}f_{530})
\end{eqnarray*}


Vertex 37: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-\pi_1[1600]^-_{\alpha }~(
{p_2})~-\pi^+({p_3})~$

\begin{eqnarray*}
&V_{37}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{531}+{p_2}_\mu g_{\nu ,\alpha
}f_{530})
\end{eqnarray*}


Vertex 38: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-f_0[600]^{0}({p_2})~-
\eta^{'}[958]^{0}({p_3})~$

\begin{eqnarray*}
&V_{38}=f_{396}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 39: $\pi^-({p_3})~-a_0[1450]^+({p_2})~-\eta_2[1870]^{0}_{\mu ,\nu }~(
{p_1})~$

\begin{eqnarray*}
&V_{39}=f_{395}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 40: $\eta_2[1870]^{0}_{\mu ,\nu }~({p_1})~-a_0[1450]^-({p_2})~-\pi^+(
{p_3})~$

\begin{eqnarray*}
&V_{40}=f_{395}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}