$f_2[2340]^{0}$ Two Body Decay Vertices(31)

There are 31 vertices in this part

Vertex 32: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta
}~({p_2})~-\eta^{'}[958]^{0}({p_3})~$

\begin{eqnarray*}
&V_{32}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{1113}+
g_{\nu ,\beta }f_{1112})
\end{eqnarray*}


Vertex 33: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{33}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{11...
...g_{\nu ,\beta }f_{1110}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1109})
\end{eqnarray*}


Vertex 34: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[980]^{0}({p_3})~$

\begin{eqnarray*}
&V_{34}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{11...
...g_{\nu ,\beta }f_{1107}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1106})
\end{eqnarray*}


Vertex 35: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_2[1430]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{35}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{11...
...g_{\nu ,\beta }f_{1104}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1103})
\end{eqnarray*}


Vertex 36: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f^{'}_2[1525]^{0}_{\alpha ,
\beta }~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{36}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{11...
...g_{\nu ,\beta }f_{1101}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1100})
\end{eqnarray*}


Vertex 37: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_2[1565]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{37}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{10...
...g_{\nu ,\beta }f_{1098}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1097})
\end{eqnarray*}


Vertex 38: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_2[1640]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{38}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{10...
...g_{\nu ,\beta }f_{1095}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{1094})
\end{eqnarray*}


Vertex 39: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\eta_2[1645]^{0}_{\alpha ,
\beta }~({p_2})~-f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{39}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{1093}+
g_{\nu ,\beta }f_{1092})
\end{eqnarray*}


Vertex 40: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{40}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{440}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{440})
\end{eqnarray*}


Vertex 41: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{41}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{43...
...ha ,\beta }f_{436} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{434})
\end{eqnarray*}


Vertex 42: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{42}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{432}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{432})
\end{eqnarray*}


Vertex 43: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{43}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{43...
...ha ,\beta }f_{428} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{426})
\end{eqnarray*}


Vertex 44: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{44}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{42...
...ha ,\beta }f_{423} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{421})
\end{eqnarray*}


Vertex 45: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{45}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...18}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{419})
\end{eqnarray*}


Vertex 46: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{46}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...417}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{414})
\end{eqnarray*}


Vertex 47: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{47}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...413}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{410})
\end{eqnarray*}


Vertex 48: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{48}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...07}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{408})
\end{eqnarray*}


Vertex 49: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~({p_2}
)~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{49}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...406}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{403})
\end{eqnarray*}


Vertex 50: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\omega[1420]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{50}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{401}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{401})
\end{eqnarray*}


Vertex 51: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\omega[1420]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{51}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{39...
...ha ,\beta }f_{397} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{395})
\end{eqnarray*}


Vertex 52: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-h_1[1595]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{52}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...92}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{393})
\end{eqnarray*}


Vertex 53: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\omega_[1650]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{53}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{390}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{390})
\end{eqnarray*}


Vertex 54: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\phi[1680]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{54}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{387}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{387})
\end{eqnarray*}


Vertex 55: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~({p_2}
)~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{55}=gi~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{360}+{p_2}_\mu g_{\nu ,\alpha
}f_{359})
\end{eqnarray*}


Vertex 56: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\pi^0({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{56}=f_{260}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 57: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-\eta^{'}[958]^{0}({p_2})~-
\eta^{'}[958]^{0}({p_3})~$

\begin{eqnarray*}
&V_{57}=f_{259}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 58: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_0[600]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{58}=f_{258}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 59: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_0[980]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{59}=f_{257}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 60: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_0[980]^{0}({p_2})~-
f_0[980]^{0}({p_3})~$

\begin{eqnarray*}
&V_{60}=f_{256}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 61: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_0[1370]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{61}=f_{255}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 62: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-f_0[1710]^{0}({p_2})~-
f_0[600]^{0}({p_3})~$

\begin{eqnarray*}
&V_{62}=f_{254}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}