$K^{*}_2[1430]$ Two Body Decay Vertices(4)

There are 4 vertices in this part

Vertex 5: $\gamma^{0}_{\beta }~({p_3})~-\overline{K^{*}[892]^0}_{\alpha }~(
{p_2})~-K^{*}_2[1430]_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{5}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}_\...
...a ,\beta }f_{75}+2
{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{75})
\end{eqnarray*}


Vertex 6: $\overline{K^{*}_2[1430]}_{\mu ,\nu }~({p_1})~-K^{*}[892]^0_{
\alpha }~({p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{6}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...a ,\beta }f_{75}-2
{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{75})
\end{eqnarray*}


Vertex 7: $\overline{K^0}({p_3})~-\gamma^{0}_{\alpha }~({p_2})~-K^{*}_2[1430]
_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{7}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{52}g~{p_2}_\nu
\end{eqnarray*}


Vertex 8: $\overline{K^{*}_2[1430]}_{\mu ,\nu }~({p_1})~-\gamma^{0}_{\alpha
}~({p_2})~-K^0({p_3})~$

\begin{eqnarray*}
&V_{8}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{52}g~{p_2}_\nu
\end{eqnarray*}