$\Delta[1700][0] $ Two Body Decay Vertices(12)

There are 12 vertices in this part

Vertex 13: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1232][0] }({p_2})~
-\Delta[1700][0] ({p_1})~$

\begin{eqnarray*}
&V_{13}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...lpha }f_{216}i
\\ &+\gamma_5{p_3}_\nu g_{\mu ,\alpha }f_{217}i)
\end{eqnarray*}


Vertex 14: $\overline{\Delta[1700][0] }({p_1})~-\Delta[1232][0] ({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{14}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...lpha }f_{216}i
\\ &-\gamma_5{p_3}_\nu g_{\mu ,\alpha }f_{217}i)
\end{eqnarray*}


Vertex 15: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1600][0] }({p_2})~
-\Delta[1700][0] ({p_1})~$

\begin{eqnarray*}
&V_{15}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...lpha }f_{212}i
\\ &+\gamma_5{p_3}_\nu g_{\mu ,\alpha }f_{213}i)
\end{eqnarray*}


Vertex 16: $\overline{\Delta[1700][0] }({p_1})~-\Delta[1600][0] ({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{16}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...lpha }f_{212}i
\\ &-\gamma_5{p_3}_\nu g_{\mu ,\alpha }f_{213}i)
\end{eqnarray*}


Vertex 17: $\gamma^{0}_{\nu }~({p_3})~-\overline{n}({p_2})~-\Delta[1700][0] (
{p_1})~$

\begin{eqnarray*}
&V_{17}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{111}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{110}+\gamma_\nu {p_3}_\mu f_{111}i)
\end{eqnarray*}


Vertex 18: $\overline{\Delta[1700][0] }({p_1})~-n({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{18}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{111}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{110}+\gamma_\nu {p_3}_\mu f_{111}i)
\end{eqnarray*}


Vertex 19: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1620][0] }({p_2})~-
\Delta[1700][0] ({p_1})~$

\begin{eqnarray*}
&V_{19}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{109}-\...
...nu }f_{108}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{108}i)
\end{eqnarray*}


Vertex 20: $\overline{\Delta[1700][0] }({p_1})~-\Delta[1620][0] ({p_2})~-
\gamma^{0}_{\nu }~({p_3})~$

\begin{eqnarray*}
&V_{20}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{109}-\...
...nu }f_{108}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{108}i)
\end{eqnarray*}


Vertex 21: $\pi^0({p_3})~-\overline{\Delta[1232][0] }({p_2})~-
\Delta[1700][0] ({p_1})~$

\begin{eqnarray*}
&V_{21}=-gi~({p_2}_\mu {p_3}_\nu f_{74}+g_{\mu ,\nu }f_{75})
\end{eqnarray*}


Vertex 22: $\overline{\Delta[1700][0] }({p_1})~-\Delta[1232][0] ({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{22}=gi~({p_2}_\mu {p_3}_\nu f_{74}+g_{\mu ,\nu }f_{75})
\end{eqnarray*}


Vertex 23: $\pi^0({p_3})~-\overline{n}({p_2})~-\Delta[1700][0] ({p_1})~$

\begin{eqnarray*}
&V_{23}=-f_{25}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 24: $\overline{\Delta[1700][0] }({p_1})~-n({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{24}=f_{25}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}