$\Delta[2000][0] $ Two Body Decay Vertices(36)

There are 36 vertices in this part

Vertex 37: $\gamma^{0}_{\gamma }~({p_3})~-\overline{\Delta[1905][0] }({p_2})~
-\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{37}=g~({p_3}_\mu {p_3}_\nu {p_3}_\beta g_{\alpha ,\gamma ...
...i-\gamma_\gamma {p_3}_\mu {p_3}_\alpha g_{\nu ,
\beta }f_{350}i)
\end{eqnarray*}


Vertex 38: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1905][0] ({p_2})~-
\gamma^{0}_{\gamma }~({p_3})~$

\begin{eqnarray*}
&V_{38}=g~({p_3}_\mu {p_3}_\nu {p_3}_\beta g_{\alpha ,\gamma ...
...i+\gamma_\gamma {p_3}_\mu {p_3}_\alpha g_{\nu ,
\beta }f_{350}i)
\end{eqnarray*}


Vertex 39: $\gamma^{0}_{\gamma }~({p_3})~-\overline{\Delta[1930][0] }({p_2})~
-\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{39}=g~(-\gamma_5{\hat {p_3}}\gamma_\gamma {p_3}_\mu {p_3}...
...}i+\gamma_5{p_3}_\alpha g_{\mu ,\gamma }g_{\nu ,\beta }f_{344}i)
\end{eqnarray*}


Vertex 40: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1930][0] ({p_2})~-
\gamma^{0}_{\gamma }~({p_3})~$

\begin{eqnarray*}
&V_{40}=g~(\gamma_5{\hat {p_3}}\gamma_\gamma {p_3}_\mu {p_3}_...
...}i-\gamma_5{p_3}_\alpha g_{\mu ,\gamma }g_{\nu ,\beta }f_{344}i)
\end{eqnarray*}


Vertex 41: $\gamma^{0}_{\beta }~({p_3})~-\overline{\Delta[1232][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{41}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
... \sqrt{{p_2}^2}\gamma_5
g_{\mu ,\beta }g_{\nu ,\alpha }f_{263}i)
\end{eqnarray*}


Vertex 42: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1232][0] ({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{42}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
... \sqrt{{p_2}^2}\gamma_5
g_{\mu ,\beta }g_{\nu ,\alpha }f_{263}i)
\end{eqnarray*}


Vertex 43: $\gamma^{0}_{\beta }~({p_3})~-\overline{\Delta[1600][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{43}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
... \sqrt{{p_2}^2}\gamma_5
g_{\mu ,\beta }g_{\nu ,\alpha }f_{258}i)
\end{eqnarray*}


Vertex 44: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1600][0] ({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{44}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
... \sqrt{{p_2}^2}\gamma_5
g_{\mu ,\beta }g_{\nu ,\alpha }f_{258}i)
\end{eqnarray*}


Vertex 45: $\gamma^{0}_{\beta }~({p_3})~-\overline{\Delta[1700][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{45}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{253}i- \...
...alpha f_{254}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha
}f_{251}i)
\end{eqnarray*}


Vertex 46: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1700][0] ({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{46}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{253}i+ \s...
...alpha f_{254}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha }
f_{251}i)
\end{eqnarray*}


Vertex 47: $\gamma^{0}_{\beta }~({p_3})~-\overline{\Delta[1920][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{47}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
... \sqrt{{p_2}^2}\gamma_5
g_{\mu ,\beta }g_{\nu ,\alpha }f_{248}i)
\end{eqnarray*}


Vertex 48: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1920][0] ({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{48}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
... \sqrt{{p_2}^2}\gamma_5
g_{\mu ,\beta }g_{\nu ,\alpha }f_{248}i)
\end{eqnarray*}


Vertex 49: $\gamma^{0}_{\beta }~({p_3})~-\overline{\Delta[1940][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{49}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{243}i- \...
...alpha f_{244}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha
}f_{241}i)
\end{eqnarray*}


Vertex 50: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1940][0] ({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{50}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{243}i+ \s...
...alpha f_{244}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha }
f_{241}i)
\end{eqnarray*}


Vertex 51: $\gamma^{0}_{\alpha }~({p_3})~-\overline{n}({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{51}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{163}i-...
...3}_\nu f_{162} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{163}i)
\end{eqnarray*}


Vertex 52: $\overline{\Delta[2000][0] }({p_1})~-n({p_2})~-\gamma^{0}_{\alpha
}~({p_3})~$

\begin{eqnarray*}
&V_{52}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{163}i-...
...3}_\nu f_{162} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{163}i)
\end{eqnarray*}


Vertex 53: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1620][0] }({p_2})~
-\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{53}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{160}i)
\end{eqnarray*}


Vertex 54: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1620][0] ({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{54}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{160}i)
\end{eqnarray*}


Vertex 55: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1750][0] }({p_2})~
-\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{55}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{159}i-...
...3}_\nu f_{158} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{159}i)
\end{eqnarray*}


Vertex 56: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1750][0] ({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{56}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{159}i-...
...3}_\nu f_{158} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{159}i)
\end{eqnarray*}


Vertex 57: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1900][0] }({p_2})~
-\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{57}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{156}i)
\end{eqnarray*}


Vertex 58: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1900][0] ({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{58}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{156}i)
\end{eqnarray*}


Vertex 59: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1910][0] }({p_2})~
-\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{59}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{155}i-...
...3}_\nu f_{154} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{155}i)
\end{eqnarray*}


Vertex 60: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1910][0] ({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{60}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{155}i-...
...3}_\nu f_{154} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{155}i)
\end{eqnarray*}


Vertex 61: $\pi^0({p_3})~-\overline{\Delta[1232][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{61}=-g~({p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{140}+{p_2}_\mu g_{\nu ,\alpha
}f_{141})
\end{eqnarray*}


Vertex 62: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1232][0] ({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{62}=g~({p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{140}+{p_2}_\mu g_{\nu ,\alpha }
f_{141})
\end{eqnarray*}


Vertex 63: $\pi^0({p_3})~-\overline{\Delta[1600][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{63}=-g~({p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{138}+{p_2}_\mu g_{\nu ,\alpha
}f_{139})
\end{eqnarray*}


Vertex 64: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1600][0] ({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{64}=g~({p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{138}+{p_2}_\mu g_{\nu ,\alpha }
f_{139})
\end{eqnarray*}


Vertex 65: $\pi^0({p_3})~-\overline{\Delta[1700][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{65}=-gi~(\gamma_5{p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{136}+\gamma_5{p_2}_
\mu g_{\nu ,\alpha }f_{137})
\end{eqnarray*}


Vertex 66: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1700][0] ({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{66}=gi~(\gamma_5{p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{136}+\gamma_5{p_2}_
\mu g_{\nu ,\alpha }f_{137})
\end{eqnarray*}


Vertex 67: $\pi^0({p_3})~-\overline{n}({p_2})~-\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{67}=-f_{51}g~\gamma_5{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 68: $\overline{\Delta[2000][0] }({p_1})~-n({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{68}=f_{51}g~\gamma_5{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 69: $\pi^0({p_3})~-\overline{\Delta[1620][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{69}=-f_{49}gi~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 70: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1620][0] ({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{70}=f_{49}gi~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 71: $\pi^0({p_3})~-\overline{\Delta[1750][0] }({p_2})~-
\Delta[2000][0] ({p_1})~$

\begin{eqnarray*}
&V_{71}=-f_{48}g~\gamma_5{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 72: $\overline{\Delta[2000][0] }({p_1})~-\Delta[1750][0] ({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{72}=f_{48}g~\gamma_5{p_2}_\mu {p_2}_\nu
\end{eqnarray*}