$\Delta[1930][+1]^+$ Two Body Decay Vertices(40)

There are 40 vertices in this part

Vertex 41: $\gamma^{0}_{\gamma }~({p_3})~-N[1675]^-({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{41}=g~({p_3}_\mu {p_3}_\nu {p_3}_\beta g_{\alpha ,\gamma ...
...-\gamma_
\gamma {p_3}_\mu {p_3}_\alpha g_{\nu ,\beta }f_{1393}i)
\end{eqnarray*}


Vertex 42: $\Delta[1930][+1]^-({p_1})~-N[1675]^+({p_2})~-\gamma^{0}_{\gamma
}~({p_3})~$

\begin{eqnarray*}
&V_{42}=g~({p_3}_\mu {p_3}_\nu {p_3}_\beta g_{\alpha ,\gamma ...
...+\gamma_
\gamma {p_3}_\mu {p_3}_\alpha g_{\nu ,\beta }f_{1393}i)
\end{eqnarray*}


Vertex 43: $\gamma^{0}_{\gamma }~({p_3})~-N[1680]^-({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{43}=g~(-\gamma_5{\hat {p_3}}\gamma_\gamma {p_3}_\mu {p_3}...
...+\gamma_5{p_3}_\alpha g_{\mu ,
\gamma }g_{\nu ,\beta }f_{1387}i)
\end{eqnarray*}


Vertex 44: $\Delta[1930][+1]^-({p_1})~-N[1680]^+({p_2})~-\gamma^{0}_{\gamma
}~({p_3})~$

\begin{eqnarray*}
&V_{44}=g~(\gamma_5{\hat {p_3}}\gamma_\gamma {p_3}_\mu {p_3}_...
...-\gamma_5{p_3}_\alpha g_{\mu ,\gamma }
g_{\nu ,\beta }f_{1387}i)
\end{eqnarray*}


Vertex 45: $\gamma^{0}_{\gamma }~({p_3})~-\Delta[1905][+1]^-({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{45}=g~(-\gamma_5{\hat {p_3}}\gamma_\gamma {p_3}_\mu {p_3}...
...+\gamma_5{p_3}_\alpha g_{\mu ,
\gamma }g_{\nu ,\beta }f_{1373}i)
\end{eqnarray*}


Vertex 46: $\Delta[1930][+1]^-({p_1})~-\Delta[1905][+1]^+({p_2})~-\gamma^{0}
_{\gamma }~({p_3})~$

\begin{eqnarray*}
&V_{46}=g~(\gamma_5{\hat {p_3}}\gamma_\gamma {p_3}_\mu {p_3}_...
...-\gamma_5{p_3}_\alpha g_{\mu ,\gamma }
g_{\nu ,\beta }f_{1373}i)
\end{eqnarray*}


Vertex 47: $\gamma^{0}_{\beta }~({p_3})~-N[1520]^-({p_2})~-\Delta[1930][+1]^+
({p_1})~$

\begin{eqnarray*}
&V_{47}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
...\sqrt{{p_2}^2}
\gamma_5g_{\mu ,\beta }g_{\nu ,\alpha }f_{1016}i)
\end{eqnarray*}


Vertex 48: $\Delta[1930][+1]^-({p_1})~-N[1520]^+({p_2})~-\gamma^{0}_{\beta }~
({p_3})~$

\begin{eqnarray*}
&V_{48}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
...\sqrt{{p_2}^2}
\gamma_5g_{\mu ,\beta }g_{\nu ,\alpha }f_{1016}i)
\end{eqnarray*}


Vertex 49: $\gamma^{0}_{\beta }~({p_3})~-N[1700]^-({p_2})~-\Delta[1930][+1]^+
({p_1})~$

\begin{eqnarray*}
&V_{49}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
...\sqrt{{p_2}^2}
\gamma_5g_{\mu ,\beta }g_{\nu ,\alpha }f_{1011}i)
\end{eqnarray*}


Vertex 50: $\Delta[1930][+1]^-({p_1})~-N[1700]^+({p_2})~-\gamma^{0}_{\beta }~
({p_3})~$

\begin{eqnarray*}
&V_{50}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
...\sqrt{{p_2}^2}
\gamma_5g_{\mu ,\beta }g_{\nu ,\alpha }f_{1011}i)
\end{eqnarray*}


Vertex 51: $\gamma^{0}_{\beta }~({p_3})~-N[1720]^-({p_2})~-\Delta[1930][+1]^+
({p_1})~$

\begin{eqnarray*}
&V_{51}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{1006}i- ...
...pha f_{1007}i+\gamma_\beta {p_3}_\mu
g_{\nu ,\alpha }f_{1004}i)
\end{eqnarray*}


Vertex 52: $\Delta[1930][+1]^-({p_1})~-N[1720]^+({p_2})~-\gamma^{0}_{\beta }~
({p_3})~$

\begin{eqnarray*}
&V_{52}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{1006}i+ \...
...pha f_{1007}i+\gamma_\beta {p_3}_\mu
g_{\nu ,\alpha }f_{1004}i)
\end{eqnarray*}


Vertex 53: $\gamma^{0}_{\beta }~({p_3})~-N[1900]^-({p_2})~-\Delta[1930][+1]^+
({p_1})~$

\begin{eqnarray*}
&V_{53}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{1001}i- ...
...lpha f_{1002}i+\gamma_\beta {p_3}_\mu g_{\nu ,
\alpha }f_{999}i)
\end{eqnarray*}


Vertex 54: $\Delta[1930][+1]^-({p_1})~-N[1900]^+({p_2})~-\gamma^{0}_{\beta }~
({p_3})~$

\begin{eqnarray*}
&V_{54}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{1001}i+ \...
...lpha f_{1002}i+\gamma_\beta {p_3}_\mu g_{\nu ,
\alpha }f_{999}i)
\end{eqnarray*}


Vertex 55: $\gamma^{0}_{\beta }~({p_3})~-\Delta[1232][+1]^-({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{55}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{991}i- \...
...alpha f_{992}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha
}f_{989}i)
\end{eqnarray*}


Vertex 56: $\Delta[1930][+1]^-({p_1})~-\Delta[1232][+1]^+({p_2})~-\gamma^{0}
_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{56}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{991}i+ \s...
...alpha f_{992}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha }
f_{989}i)
\end{eqnarray*}


Vertex 57: $\gamma^{0}_{\beta }~({p_3})~-\Delta[1600][+1]^-({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{57}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{986}i- \...
...alpha f_{987}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha
}f_{984}i)
\end{eqnarray*}


Vertex 58: $\Delta[1930][+1]^-({p_1})~-\Delta[1600][+1]^+({p_2})~-\gamma^{0}
_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{58}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{986}i+ \s...
...alpha f_{987}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha }
f_{984}i)
\end{eqnarray*}


Vertex 59: $\gamma^{0}_{\beta }~({p_3})~-\Delta[1700][+1]^-({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{59}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
... \sqrt{{p_2}^2}\gamma_5
g_{\mu ,\beta }g_{\nu ,\alpha }f_{981}i)
\end{eqnarray*}


Vertex 60: $\Delta[1930][+1]^-({p_1})~-\Delta[1700][+1]^+({p_2})~-\gamma^{0}
_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{60}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
... \sqrt{{p_2}^2}\gamma_5
g_{\mu ,\beta }g_{\nu ,\alpha }f_{981}i)
\end{eqnarray*}


Vertex 61: $\gamma^{0}_{\beta }~({p_3})~-\Delta[1920][+1]^-({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{61}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{976}i- \...
...alpha f_{977}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha
}f_{974}i)
\end{eqnarray*}


Vertex 62: $\Delta[1930][+1]^-({p_1})~-\Delta[1920][+1]^+({p_2})~-\gamma^{0}
_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{62}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{976}i+ \s...
...alpha f_{977}i+\gamma_\beta {p_3}_\mu g_{\nu ,\alpha }
f_{974}i)
\end{eqnarray*}


Vertex 63: $\gamma^{0}_{\alpha }~({p_3})~-\overline{P}({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{63}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{524}i)
\end{eqnarray*}


Vertex 64: $\Delta[1930][+1]^-({p_1})~-P({p_2})~-\gamma^{0}_{\alpha }~({p_3}
)~$

\begin{eqnarray*}
&V_{64}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{524}i)
\end{eqnarray*}


Vertex 65: $\gamma^{0}_{\alpha }~({p_3})~-\overline{N[1440]}({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{65}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{519}i)
\end{eqnarray*}


Vertex 66: $\Delta[1930][+1]^-({p_1})~-N[1440]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{66}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{519}i)
\end{eqnarray*}


Vertex 67: $\gamma^{0}_{\alpha }~({p_3})~-\overline{N[1535]}({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{67}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{518}i-...
...3}_\nu f_{517} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{518}i)
\end{eqnarray*}


Vertex 68: $\Delta[1930][+1]^-({p_1})~-N[1535]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{68}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{518}i-...
...3}_\nu f_{517} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{518}i)
\end{eqnarray*}


Vertex 69: $\gamma^{0}_{\alpha }~({p_3})~-\overline{N[1650]}({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{69}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{516}i-...
...3}_\nu f_{515} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{516}i)
\end{eqnarray*}


Vertex 70: $\Delta[1930][+1]^-({p_1})~-N[1650]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{70}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{516}i-...
...3}_\nu f_{515} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{516}i)
\end{eqnarray*}


Vertex 71: $\gamma^{0}_{\alpha }~({p_3})~-\overline{N[1710]}({p_2})~-
\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{71}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{513}i)
\end{eqnarray*}


Vertex 72: $\Delta[1930][+1]^-({p_1})~-N[1710]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{72}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{513}i)
\end{eqnarray*}


Vertex 73: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1620][+1]}({p_2})~
-\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{73}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{508}i-...
...3}_\nu f_{507} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{508}i)
\end{eqnarray*}


Vertex 74: $\Delta[1930][+1]^-({p_1})~-\Delta[1620][+1]({p_2})~-\gamma^{0}_{
\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{74}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{508}i-...
...3}_\nu f_{507} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{508}i)
\end{eqnarray*}


Vertex 75: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~
-\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{75}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{505}i)
\end{eqnarray*}


Vertex 76: $\Delta[1930][+1]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{
\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{76}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{505}i)
\end{eqnarray*}


Vertex 77: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~
-\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{77}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{504}i-...
...3}_\nu f_{503} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{504}i)
\end{eqnarray*}


Vertex 78: $\Delta[1930][+1]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{
\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{78}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{504}i-...
...3}_\nu f_{503} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{504}i)
\end{eqnarray*}


Vertex 79: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1910][+1]}({p_2})~
-\Delta[1930][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{79}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{501}i)
\end{eqnarray*}


Vertex 80: $\Delta[1930][+1]^-({p_1})~-\Delta[1910][+1]({p_2})~-\gamma^{0}_{
\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{80}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{501}i)
\end{eqnarray*}