$K_2[1820]^+$ Two Body Decay Vertices(26)

There are 26 vertices in this part

Vertex 27: $\pi^0({p_3})~-K_2[1580]^-_{\alpha ,\beta }~({p_2})~-K_2[1820]^+_{
\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{27}=\epsilon_{{p_1},{p_2},\mu ,\alpha }gi~({p_1}_\beta {p_2}_\nu f_{598}+
g_{\nu ,\beta }f_{597})
\end{eqnarray*}


Vertex 28: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_2[1580]^+_{\alpha ,\beta }~(
{p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{28}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }gi~({p_1}_\beta {p_2}_\nu f_{598}+
g_{\nu ,\beta }f_{597})
\end{eqnarray*}


Vertex 29: $\gamma^{0}_{\beta }~({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{29}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu \epsil...
...04}-2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{405})
\end{eqnarray*}


Vertex 30: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{30}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu \epsilo...
...04}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{405})
\end{eqnarray*}


Vertex 31: $\gamma^{0}_{\beta }~({p_3})~-K_1[1270]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{31}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}_...
...,\beta }
f_{402}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{402})
\end{eqnarray*}


Vertex 32: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1270]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{32}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{402}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{402})
\end{eqnarray*}


Vertex 33: $\gamma^{0}_{\beta }~({p_3})~-K_1[1400]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{33}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}_...
...,\beta }
f_{399}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{399})
\end{eqnarray*}


Vertex 34: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1400]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{34}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{399}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{399})
\end{eqnarray*}


Vertex 35: $\gamma^{0}_{\beta }~({p_3})~-K^{*}[1410]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{35}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu \epsil...
...95}-2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{396})
\end{eqnarray*}


Vertex 36: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[1410]^+_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{36}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu \epsilo...
...95}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{396})
\end{eqnarray*}


Vertex 37: $\gamma^{0}_{\beta }~({p_3})~-K_1[1650]^-_{\alpha }~({p_2})~-
K_2[1820]^+_{\mu ,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{37}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\nu {p_3}_...
...,\beta }
f_{393}+2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{393})
\end{eqnarray*}


Vertex 38: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1650]^+_{\alpha }~({p_2})~-
\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{38}={\displaystyle{gi \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{393}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{393})
\end{eqnarray*}


Vertex 39: $K^-({p_3})~-\gamma^{0}_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,\nu
}~({p_1})~$

\begin{eqnarray*}
&V_{39}={\displaystyle{f_{260}g \over 2}}~(-{p_1}^2{p_2}_\nu ...
...}_\alpha {p_2}_\mu {p_2}_\nu +{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 40: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\gamma^{0}_{\alpha }~({p_2})~-
K^+({p_3})~$

\begin{eqnarray*}
&V_{40}={\displaystyle{f_{260}g \over 2}}~({p_1}^2{p_2}_\nu g...
...}_\alpha {p_2}_\mu {p_2}_\nu -{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 41: $K[1460]^-({p_3})~-\gamma^{0}_{\alpha }~({p_2})~-K_2[1820]^+_{\mu
,\nu }~({p_1})~$

\begin{eqnarray*}
&V_{41}={\displaystyle{f_{259}g \over 2}}~(-{p_1}^2{p_2}_\nu ...
...}_\alpha {p_2}_\mu {p_2}_\nu +{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 42: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-\gamma^{0}_{\alpha }~({p_2})~-
K[1460]^+({p_3})~$

\begin{eqnarray*}
&V_{42}={\displaystyle{f_{259}g \over 2}}~({p_1}^2{p_2}_\nu g...
...}_\alpha {p_2}_\mu {p_2}_\nu -{p_2}_\nu {p_3}^2g_{\mu ,\alpha })
\end{eqnarray*}


Vertex 43: $\pi^0({p_3})~-K^{*}[892]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{43}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{257}+{p_2}_\mu g_{\nu ,\alpha
}f_{256})
\end{eqnarray*}


Vertex 44: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[892]^+_{\alpha }~({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{44}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{257}+{p_2}_\mu g_{\nu ,\alpha }
f_{256})
\end{eqnarray*}


Vertex 45: $\pi^0({p_3})~-K_1[1270]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{45}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{253}g~{p_2}_\nu
\end{eqnarray*}


Vertex 46: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1270]^+_{\alpha }~({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{46}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{253}g~{p_2}_\nu
\end{eqnarray*}


Vertex 47: $\pi^0({p_3})~-K_1[1400]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{47}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{252}g~{p_2}_\nu
\end{eqnarray*}


Vertex 48: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1400]^+_{\alpha }~({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{48}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{252}g~{p_2}_\nu
\end{eqnarray*}


Vertex 49: $\pi^0({p_3})~-K^{*}[1410]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{49}=-g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{251}+{p_2}_\mu g_{\nu ,\alpha
}f_{250})
\end{eqnarray*}


Vertex 50: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K^{*}[1410]^+_{\alpha }~({p_2})~
-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{50}=g~({p_1}_\alpha {p_2}_\mu {p_2}_\nu f_{251}+{p_2}_\mu g_{\nu ,\alpha }
f_{250})
\end{eqnarray*}


Vertex 51: $\pi^0({p_3})~-K_1[1650]^-_{\alpha }~({p_2})~-K_2[1820]^+_{\mu ,
\nu }~({p_1})~$

\begin{eqnarray*}
&V_{51}=\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{249}g~{p_2}_\nu
\end{eqnarray*}


Vertex 52: $K_2[1820]^-_{\mu ,\nu }~({p_1})~-K_1[1650]^+_{\alpha }~({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{52}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }f_{249}g~{p_2}_\nu
\end{eqnarray*}