$f_2[1640]^{0}$ Two Body Decay Vertices(8)

There are 8 vertices in this part

Vertex 9: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{9}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\al...
...beta }
f_{1080}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{1080})
\end{eqnarray*}


Vertex 10: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{10}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{10...
... ,\beta }f_{1076} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{1074})
\end{eqnarray*}


Vertex 11: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{11}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...beta }
f_{1072}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{1072})
\end{eqnarray*}


Vertex 12: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{12}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...8}+2g_{\nu ,\beta }\epsilon_{{p_1},
{p_3},\mu ,\alpha }f_{1069})
\end{eqnarray*}


Vertex 13: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{13}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...5}+2g_{\nu ,\beta }\epsilon_{{p_1},
{p_3},\mu ,\alpha }f_{1066})
\end{eqnarray*}


Vertex 14: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-\omega[1420]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{14}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...beta }
f_{1063}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{1063})
\end{eqnarray*}


Vertex 15: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-h_1[1595]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{15}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...9}+2g_{\nu ,\beta }\epsilon_{{p_1},
{p_3},\mu ,\alpha }f_{1060})
\end{eqnarray*}


Vertex 16: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-\eta^{0}({p_2})~-\eta^{0}(
{p_3})~$

\begin{eqnarray*}
&V_{16}=f_{364}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}