$J/\psi^{0}$ Two Body Decay Vertices(98)

There are 98 vertices in this part

Vertex 99: $f_4[2050]^{0}_{\mu ,\nu ,\alpha ,\beta }~({p_1})~-J/\psi^{0}_{
\gamma }~({p_2})~-\gamma^{0}_{\eta }~({p_3})~$

\begin{eqnarray*}
&V_{99}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...u {p_3}_\alpha {p_3}_\beta {p_3}_
\gamma g_{\mu ,\eta }f_{1012})
\end{eqnarray*}


Vertex 100: $f_4[2050]^{0}_{\mu ,\nu ,\alpha ,\beta }~({p_1})~-J/\psi^{0}_{
\gamma }~({p_2})~-\omega[782]^{0}_{\eta }~({p_3})~$

\begin{eqnarray*}
&V_{100}=g~({p_1}_\gamma {p_1}_\eta {p_2}_\mu {p_2}_\nu {p_2}...
...{p_2}_\mu {p_2}_\nu g_{\alpha ,\gamma }g_{\beta ,\eta }f_{1006})
\end{eqnarray*}


Vertex 101: $f_4[2050]^{0}_{\mu ,\nu ,\alpha ,\beta }~({p_1})~-J/\psi^{0}_{
\gamma }~({p_2})~-\phi[1020]^{0}_{\eta }~({p_3})~$

\begin{eqnarray*}
&V_{101}=g~({p_1}_\gamma {p_1}_\eta {p_2}_\mu {p_2}_\nu {p_2}...
...{p_2}_\mu {p_2}_\nu g_{\alpha ,\gamma }g_{\beta ,\eta }f_{1001})
\end{eqnarray*}


Vertex 102: $f_4[2300]^{0}_{\mu ,\nu ,\alpha ,\beta }~({p_1})~-J/\psi^{0}_{
\gamma }~({p_2})~-\gamma^{0}_{\eta }~({p_3})~$

\begin{eqnarray*}
&V_{102}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...nu {p_3}_\alpha {p_3}_\beta {p_3}_\gamma g_{\mu ,
\eta }f_{943})
\end{eqnarray*}


Vertex 103: $f_4[2300]^{0}_{\mu ,\nu ,\alpha ,\beta }~({p_1})~-J/\psi^{0}_{
\gamma }~({p_2})~-\omega[782]^{0}_{\eta }~({p_3})~$

\begin{eqnarray*}
&V_{103}=g~({p_1}_\gamma {p_1}_\eta {p_2}_\mu {p_2}_\nu {p_2}...
...
{p_2}_\mu {p_2}_\nu g_{\alpha ,\gamma }g_{\beta ,\eta }f_{937})
\end{eqnarray*}


Vertex 104: $\omega_3[1670]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-f_2[1270]^{0}_{
\beta ,\gamma }~({p_2})~-J/\psi^{0}_{\eta }~({p_3})~$

\begin{eqnarray*}
&V_{104}=g~({p_1}_\beta {p_1}_\gamma {p_1}_\eta {p_2}_\mu {p_...
...} \\ &+g_{\mu ,\beta }g_{\nu ,\gamma }g_{
\alpha ,\eta }f_{929})
\end{eqnarray*}


Vertex 105: $\omega_3[1670]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-J/\psi^{0}_{
\beta }~({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{105}=-\epsilon_{{p_1},{p_2},\mu ,\beta }f_{911}g~{p_2}_\nu {p_2}_\alpha
\end{eqnarray*}


Vertex 106: $\omega_3[1670]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-J/\psi^{0}_{
\beta }~({p_2})~-f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{106}=g~({p_1}_\beta {p_2}_\mu {p_2}_\nu {p_2}_\alpha f_{910}+{p_2}_\mu
{p_2}_\nu g_{\alpha ,\beta }f_{909})
\end{eqnarray*}


Vertex 107: $\phi_3[1850]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-J/\psi^{0}_{\beta
}~({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{107}=-\epsilon_{{p_1},{p_2},\mu ,\beta }f_{897}g~{p_2}_\nu {p_2}_\alpha
\end{eqnarray*}


Vertex 108: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{108}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{835}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{835})
\end{eqnarray*}


Vertex 109: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{109}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{8...
...ha ,\beta }f_{831} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{829})
\end{eqnarray*}


Vertex 110: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{110}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{8...
...ha ,\beta }f_{826} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{824})
\end{eqnarray*}


Vertex 111: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1170]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{111}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...823}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{820})
\end{eqnarray*}


Vertex 112: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1380]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{112}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...819}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{816})
\end{eqnarray*}


Vertex 113: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[1420]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{113}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{8...
...ha ,\beta }f_{813} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{811})
\end{eqnarray*}


Vertex 114: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1595]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{114}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...810}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{807})
\end{eqnarray*}


Vertex 115: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega_[1650]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{115}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{8...
...ha ,\beta }f_{804} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{802})
\end{eqnarray*}


Vertex 116: $f_2[1270]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1680]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{116}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{8...
...ha ,\beta }f_{799} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{797})
\end{eqnarray*}


Vertex 117: $f_2[1430]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{117}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{771}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{771})
\end{eqnarray*}


Vertex 118: $f_2[1430]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{118}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{7...
...ha ,\beta }f_{767} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{765})
\end{eqnarray*}


Vertex 119: $f_2[1430]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{119}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{7...
...ha ,\beta }f_{762} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{760})
\end{eqnarray*}


Vertex 120: $f_2[1430]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1170]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{120}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...759}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{756})
\end{eqnarray*}


Vertex 121: $f_2[1430]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1380]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{121}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...755}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{752})
\end{eqnarray*}


Vertex 122: $f_2[1430]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[1420]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{122}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{7...
...ha ,\beta }f_{749} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{747})
\end{eqnarray*}


Vertex 123: $f_2[1430]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1595]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{123}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...746}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{743})
\end{eqnarray*}


Vertex 124: $f_2[1430]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega_[1650]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{124}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{7...
...ha ,\beta }f_{740} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{738})
\end{eqnarray*}


Vertex 125: $f^{'}_2[1525]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{125}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{712}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{712})
\end{eqnarray*}


Vertex 126: $f^{'}_2[1525]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{126}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{7...
...ha ,\beta }f_{708} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{706})
\end{eqnarray*}


Vertex 127: $f^{'}_2[1525]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~(
{p_2})~-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{127}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{7...
...ha ,\beta }f_{703} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{701})
\end{eqnarray*}


Vertex 128: $f^{'}_2[1525]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~(
{p_2})~-h_1[1170]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{128}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...700}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{697})
\end{eqnarray*}


Vertex 129: $f^{'}_2[1525]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~(
{p_2})~-h_1[1380]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{129}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...696}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{693})
\end{eqnarray*}


Vertex 130: $f^{'}_2[1525]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~(
{p_2})~-\omega[1420]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{130}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{6...
...ha ,\beta }f_{690} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{688})
\end{eqnarray*}


Vertex 131: $f_2[1565]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{131}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{662}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{662})
\end{eqnarray*}


Vertex 132: $f_2[1565]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{132}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{6...
...ha ,\beta }f_{658} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{656})
\end{eqnarray*}


Vertex 133: $f_2[1565]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{133}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{6...
...ha ,\beta }f_{653} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{651})
\end{eqnarray*}


Vertex 134: $f_2[1565]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1170]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{134}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...650}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{647})
\end{eqnarray*}


Vertex 135: $f_2[1565]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1380]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{135}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...646}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{643})
\end{eqnarray*}


Vertex 136: $f_2[1565]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[1420]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{136}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{6...
...ha ,\beta }f_{640} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{638})
\end{eqnarray*}


Vertex 137: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{137}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{607}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{607})
\end{eqnarray*}


Vertex 138: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{138}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{6...
...ha ,\beta }f_{603} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{601})
\end{eqnarray*}


Vertex 139: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{139}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{6...
...ha ,\beta }f_{598} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{596})
\end{eqnarray*}


Vertex 140: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1170]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{140}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...595}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{592})
\end{eqnarray*}


Vertex 141: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1380]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{141}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...591}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{588})
\end{eqnarray*}


Vertex 142: $f_2[1640]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[1420]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{142}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
...ha ,\beta }f_{585} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{583})
\end{eqnarray*}


Vertex 143: $f_2[1810]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{143}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{547}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{547})
\end{eqnarray*}


Vertex 144: $f_2[1810]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{144}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
...ha ,\beta }f_{543} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{541})
\end{eqnarray*}


Vertex 145: $f_2[1810]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{145}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{5...
...ha ,\beta }f_{538} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{536})
\end{eqnarray*}


Vertex 146: $f_2[1810]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1170]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{146}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...535}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{532})
\end{eqnarray*}


Vertex 147: $f_2[1910]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{147}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{496}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{496})
\end{eqnarray*}


Vertex 148: $f_2[1910]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{148}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{4...
...ha ,\beta }f_{492} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{490})
\end{eqnarray*}


Vertex 149: $f_2[1910]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{149}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{4...
...ha ,\beta }f_{487} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{485})
\end{eqnarray*}


Vertex 150: $f_2[1910]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-h_1[1170]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{150}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha...
...484}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{481})
\end{eqnarray*}


Vertex 151: $f_2[1950]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{151}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{445}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{445})
\end{eqnarray*}


Vertex 152: $f_2[1950]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{152}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{4...
...ha ,\beta }f_{441} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{439})
\end{eqnarray*}


Vertex 153: $f_2[1950]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{153}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{4...
...ha ,\beta }f_{436} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{434})
\end{eqnarray*}


Vertex 154: $f_2[2010]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{154}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{394}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{394})
\end{eqnarray*}


Vertex 155: $f_2[2010]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{155}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{3...
...ha ,\beta }f_{390} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{388})
\end{eqnarray*}


Vertex 156: $f_2[2010]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{156}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{3...
...ha ,\beta }f_{385} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{383})
\end{eqnarray*}


Vertex 157: $f_2[2150]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{157}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{338}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{338})
\end{eqnarray*}


Vertex 158: $f_2[2150]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{158}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{3...
...ha ,\beta }f_{334} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{332})
\end{eqnarray*}


Vertex 159: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{159}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{274}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{274})
\end{eqnarray*}


Vertex 160: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{160}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{2...
...ha ,\beta }f_{270} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{268})
\end{eqnarray*}


Vertex 161: $f_2[2340]^{0}_{\mu ,\nu }~({p_1})~-J/\psi^{0}_{\alpha }~({p_2})~
-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{161}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\...
...,\beta }
f_{210}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{210})
\end{eqnarray*}


Vertex 162: $J/\psi^{0}_{\mu }~({p_1})~-\omega^h[1900]^{0}_{\nu }~({p_2})~-
\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{162}={\displaystyle{gi \over 2}}~(-{p_1}^2{p_3}_\mu g_{\n...
...\mu g_{\nu ,\alpha }f_{182}+2{p_3}_\nu g_{\mu ,\alpha }
f_{182})
\end{eqnarray*}


Vertex 163: $J/\psi^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
\omega^h[1900]^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{163}=gi~({p_1}_\nu {p_1}_\alpha {p_2}_\mu f_{181}+{p_1}_\...
..._\alpha g_{\mu ,\nu }f_{178}+{p_2}_\mu g_{\nu ,\alpha }
f_{179})
\end{eqnarray*}


Vertex 164: $J/\psi^{0}_{\mu }~({p_1})~-\phi[1020]^{0}_{\nu }~({p_2})~-
\omega^h[1900]^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{164}=gi~({p_1}_\nu {p_1}_\alpha {p_2}_\mu f_{177}+{p_1}_\...
..._\alpha g_{\mu ,\nu }f_{174}+{p_2}_\mu g_{\nu ,\alpha }
f_{175})
\end{eqnarray*}


Vertex 165: $J/\psi^{0}_{\mu }~({p_1})~-h_1[1170]^{0}_{\nu }~({p_2})~-
\omega^h[1900]^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{165}=-gi~({p_2}_\mu \epsilon_{{p_1},{p_2},\nu ,\alpha }f_...
...,\nu ,\alpha }f_{172}+\epsilon_{{p_2},\mu ,\nu ,\alpha }f_{173})
\end{eqnarray*}


Vertex 166: $J/\psi^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-\eta^{0}(
{p_3})~$

\begin{eqnarray*}
&V_{166}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{57}g
\end{eqnarray*}


Vertex 167: $J/\psi^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{167}={\displaystyle{f_{56}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 168: $J/\psi^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[1710]^{0}({p_3})~$

\begin{eqnarray*}
&V_{168}={\displaystyle{f_{55}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 169: $J/\psi^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2020]^{0}({p_3})~$

\begin{eqnarray*}
&V_{169}={\displaystyle{f_{54}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 170: $J/\psi^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2100]^{0}({p_3})~$

\begin{eqnarray*}
&V_{170}={\displaystyle{f_{53}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 171: $J/\psi^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2200]^{0}({p_3})~$

\begin{eqnarray*}
&V_{171}={\displaystyle{f_{52}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 172: $J/\psi^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{172}={\displaystyle{f_{51}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 173: $J/\psi^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{173}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{50}g
\end{eqnarray*}


Vertex 174: $J/\psi^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{174}=g~({p_1}_\nu {p_2}_\mu f_{49}+g_{\mu ,\nu }f_{48})
\end{eqnarray*}


Vertex 175: $J/\psi^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[1710]^{0}({p_3})~$

\begin{eqnarray*}
&V_{175}=g~({p_1}_\nu {p_2}_\mu f_{47}+g_{\mu ,\nu }f_{46})
\end{eqnarray*}


Vertex 176: $J/\psi^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[2020]^{0}({p_3})~$

\begin{eqnarray*}
&V_{176}=g~({p_1}_\nu {p_2}_\mu f_{45}+g_{\mu ,\nu }f_{44})
\end{eqnarray*}


Vertex 177: $J/\psi^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[2100]^{0}({p_3})~$

\begin{eqnarray*}
&V_{177}=g~({p_1}_\nu {p_2}_\mu f_{43}+g_{\mu ,\nu }f_{42})
\end{eqnarray*}


Vertex 178: $J/\psi^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[2200]^{0}({p_3})~$

\begin{eqnarray*}
&V_{178}=g~({p_1}_\nu {p_2}_\mu f_{41}+g_{\mu ,\nu }f_{40})
\end{eqnarray*}


Vertex 179: $J/\psi^{0}_{\mu }~({p_1})~-\phi[1020]^{0}_{\nu }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{179}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{39}g
\end{eqnarray*}


Vertex 180: $J/\psi^{0}_{\mu }~({p_1})~-\phi[1020]^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{180}=g~({p_1}_\nu {p_2}_\mu f_{38}+g_{\mu ,\nu }f_{37})
\end{eqnarray*}


Vertex 181: $J/\psi^{0}_{\mu }~({p_1})~-\phi[1020]^{0}_{\nu }~({p_2})~-
f_0[1710]^{0}({p_3})~$

\begin{eqnarray*}
&V_{181}=g~({p_1}_\nu {p_2}_\mu f_{36}+g_{\mu ,\nu }f_{35})
\end{eqnarray*}


Vertex 182: $J/\psi^{0}_{\mu }~({p_1})~-\phi[1020]^{0}_{\nu }~({p_2})~-
f_0[2020]^{0}({p_3})~$

\begin{eqnarray*}
&V_{182}=g~({p_1}_\nu {p_2}_\mu f_{34}+g_{\mu ,\nu }f_{33})
\end{eqnarray*}


Vertex 183: $J/\psi^{0}_{\mu }~({p_1})~-h_1[1170]^{0}_{\nu }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{183}=g~({p_1}_\nu {p_2}_\mu f_{32}+g_{\mu ,\nu }f_{31})
\end{eqnarray*}


Vertex 184: $J/\psi^{0}_{\mu }~({p_1})~-h_1[1170]^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{184}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{30}g
\end{eqnarray*}


Vertex 185: $J/\psi^{0}_{\mu }~({p_1})~-h_1[1170]^{0}_{\nu }~({p_2})~-
f_0[1710]^{0}({p_3})~$

\begin{eqnarray*}
&V_{185}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{29}g
\end{eqnarray*}


Vertex 186: $J/\psi^{0}_{\mu }~({p_1})~-h_1[1380]^{0}_{\nu }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{186}=g~({p_1}_\nu {p_2}_\mu f_{28}+g_{\mu ,\nu }f_{27})
\end{eqnarray*}


Vertex 187: $J/\psi^{0}_{\mu }~({p_1})~-h_1[1380]^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{187}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{26}g
\end{eqnarray*}


Vertex 188: $J/\psi^{0}_{\mu }~({p_1})~-\omega[1420]^{0}_{\nu }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{188}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{25}g
\end{eqnarray*}


Vertex 189: $J/\psi^{0}_{\mu }~({p_1})~-\omega[1420]^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{189}=g~({p_1}_\nu {p_2}_\mu f_{24}+g_{\mu ,\nu }f_{23})
\end{eqnarray*}


Vertex 190: $J/\psi^{0}_{\mu }~({p_1})~-h_1[1595]^{0}_{\nu }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{190}=g~({p_1}_\nu {p_2}_\mu f_{22}+g_{\mu ,\nu }f_{21})
\end{eqnarray*}


Vertex 191: $J/\psi^{0}_{\mu }~({p_1})~-h_1[1595]^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{191}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{20}g
\end{eqnarray*}


Vertex 192: $J/\psi^{0}_{\mu }~({p_1})~-\omega_[1650]^{0}_{\nu }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{192}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{19}g
\end{eqnarray*}


Vertex 193: $J/\psi^{0}_{\mu }~({p_1})~-\omega_[1650]^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{193}=g~({p_1}_\nu {p_2}_\mu f_{18}+g_{\mu ,\nu }f_{17})
\end{eqnarray*}


Vertex 194: $J/\psi^{0}_{\mu }~({p_1})~-\phi[1680]^{0}_{\nu }~({p_2})~-
\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{194}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{16}g
\end{eqnarray*}


Vertex 195: $J/\psi^{0}_{\mu }~({p_1})~-\phi[1680]^{0}_{\nu }~({p_2})~-
f_0[1370]^{0}({p_3})~$

\begin{eqnarray*}
&V_{195}=g~({p_1}_\nu {p_2}_\mu f_{15}+g_{\mu ,\nu }f_{14})
\end{eqnarray*}


Vertex 196: $J/\psi^{0}_{\mu }~({p_1})~-e^+({p_2})~-e^-({p_3})~$

\begin{eqnarray*}
&V_{196}=f_{6}g~\gamma_\mu
\end{eqnarray*}