$f_0[2330]^{0}$ Two Body Decay Vertices(18)

There are 18 vertices in this part

Vertex 19: $\omega_3[1670]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-\gamma^{0}_{
\beta }~({p_2})~-f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{19}={\displaystyle{f_{914}g \over 2}}~({p_1}^2{p_2}_\nu {...
...nu {p_2}_\alpha -{p_2}_\nu {p_2}_
\alpha {p_3}^2g_{\mu ,\beta })
\end{eqnarray*}


Vertex 20: $\phi_3[1850]^{0}_{\mu ,\nu ,\alpha }~({p_1})~-\gamma^{0}_{\beta
}~({p_2})~-f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{20}={\displaystyle{f_{902}g \over 2}}~({p_1}^2{p_2}_\nu {...
...nu {p_2}_\alpha -{p_2}_\nu {p_2}_
\alpha {p_3}^2g_{\mu ,\beta })
\end{eqnarray*}


Vertex 21: $\omega[782]^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{21}={\displaystyle{f_{152}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 22: $\omega[782]^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{22}=g~({p_1}_\nu {p_2}_\mu f_{143}+g_{\mu ,\nu }f_{142})
\end{eqnarray*}


Vertex 23: $\phi[1020]^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{23}={\displaystyle{f_{135}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 24: $\phi[1020]^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{24}=g~({p_1}_\nu {p_2}_\mu f_{128}+g_{\mu ,\nu }f_{127})
\end{eqnarray*}


Vertex 25: $\phi[1020]^{0}_{\mu }~({p_1})~-\phi[1020]^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{25}=g~({p_1}_\nu {p_2}_\mu f_{122}+g_{\mu ,\nu }f_{121})
\end{eqnarray*}


Vertex 26: $h_1[1170]^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{26}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{114}g
\end{eqnarray*}


Vertex 27: $h_1[1170]^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{27}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{110}g
\end{eqnarray*}


Vertex 28: $h_1[1170]^{0}_{\mu }~({p_1})~-\phi[1020]^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{28}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{108}g
\end{eqnarray*}


Vertex 29: $h_1[1380]^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{29}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{101}g
\end{eqnarray*}


Vertex 30: $h_1[1380]^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{30}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{97}g
\end{eqnarray*}


Vertex 31: $\omega[1420]^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{31}={\displaystyle{f_{90}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 32: $\omega[1420]^{0}_{\mu }~({p_1})~-\omega[782]^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{32}=g~({p_1}_\nu {p_2}_\mu f_{88}+g_{\mu ,\nu }f_{87})
\end{eqnarray*}


Vertex 33: $h_1[1595]^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{33}=-\epsilon_{{p_1},{p_2},\mu ,\nu }f_{80}g
\end{eqnarray*}


Vertex 34: $\omega_[1650]^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{34}={\displaystyle{f_{69}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 35: $\phi[1680]^{0}_{\mu }~({p_1})~-\gamma^{0}_{\nu }~({p_2})~-
f_0[2330]^{0}({p_3})~$

\begin{eqnarray*}
&V_{35}={\displaystyle{f_{60}g \over 2}}~({p_1}^2g_{\mu ,\nu }+2{p_1}_\nu
{p_2}_\mu -{p_3}^2g_{\mu ,\nu })
\end{eqnarray*}


Vertex 36: $f_0[2330]^{0}({p_1})~-\eta^{0}({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{36}=f_{7}g
\end{eqnarray*}