$f_2[2300]^{0}$ Two Body Decay Vertices(23)

There are 23 vertices in this part

Vertex 24: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta
}~({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{24}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{675}+
g_{\nu ,\beta }f_{674})
\end{eqnarray*}


Vertex 25: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1270]^{0}_{\alpha ,\beta
}~({p_2})~-f_0[980]^{0}({p_3})~$

\begin{eqnarray*}
&V_{25}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{67...
...u g_{\nu ,\beta }f_{672}+g_{\mu ,\alpha }g_{\nu ,\beta }f_{671})
\end{eqnarray*}


Vertex 26: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1430]^{0}_{\alpha ,\beta
}~({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{26}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{670}+
g_{\nu ,\beta }f_{669})
\end{eqnarray*}


Vertex 27: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f^{'}_2[1525]^{0}_{\alpha ,
\beta }~({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{27}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{668}+
g_{\nu ,\beta }f_{667})
\end{eqnarray*}


Vertex 28: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1565]^{0}_{\alpha ,\beta
}~({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{28}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{666}+
g_{\nu ,\beta }f_{665})
\end{eqnarray*}


Vertex 29: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_2[1640]^{0}_{\alpha ,\beta
}~({p_2})~-\eta^{0}({p_3})~$

\begin{eqnarray*}
&V_{29}=-\epsilon_{{p_1},{p_2},\mu ,\alpha }g~({p_1}_\beta {p_2}_\nu f_{664}+
g_{\nu ,\beta }f_{663})
\end{eqnarray*}


Vertex 30: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{30}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{340}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{340})
\end{eqnarray*}


Vertex 31: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega[782]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{31}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{33...
...ha ,\beta }f_{336} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{334})
\end{eqnarray*}


Vertex 32: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{32}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{332}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{332})
\end{eqnarray*}


Vertex 33: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{33}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{33...
...ha ,\beta }f_{328} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{326})
\end{eqnarray*}


Vertex 34: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\phi[1020]^{0}_{\alpha }~(
{p_2})~-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{34}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{32...
...ha ,\beta }f_{323} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{321})
\end{eqnarray*}


Vertex 35: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{35}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...18}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{319})
\end{eqnarray*}


Vertex 36: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{36}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...317}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{314})
\end{eqnarray*}


Vertex 37: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1170]^{0}_{\alpha }~({p_2}
)~-\phi[1020]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{37}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...313}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{310})
\end{eqnarray*}


Vertex 38: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{38}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...07}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{308})
\end{eqnarray*}


Vertex 39: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1380]^{0}_{\alpha }~({p_2}
)~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{39}=-g~({p_2}_\mu {p_2}_\nu \epsilon_{{p_1},{p_2},\alpha ...
...306}+g_{\nu ,\alpha }\epsilon_{{p_1},{p_2},\mu ,\beta }
f_{303})
\end{eqnarray*}


Vertex 40: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega[1420]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{40}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{301}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{301})
\end{eqnarray*}


Vertex 41: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega[1420]^{0}_{\alpha }~(
{p_2})~-\omega[782]^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{41}=g~({p_1}_\alpha {p_1}_\beta {p_2}_\mu {p_2}_\nu f_{29...
...ha ,\beta }f_{297} \\ &+g_{\mu ,\alpha }g_{\nu ,
\beta }f_{295})
\end{eqnarray*}


Vertex 42: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-h_1[1595]^{0}_{\alpha }~({p_2}
)~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{42}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu \epsilon...
...92}+2g_{\nu ,\beta }\epsilon_{{p_1},{p_3},\mu ,
\alpha }f_{293})
\end{eqnarray*}


Vertex 43: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\omega_[1650]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{43}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{290}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{290})
\end{eqnarray*}


Vertex 44: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\phi[1680]^{0}_{\alpha }~(
{p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{44}={\displaystyle{g \over 2}}~({p_1}^2{p_3}_\nu {p_3}_\a...
...,\beta }
f_{287}-2{p_3}_\nu {p_3}_\alpha g_{\mu ,\beta }f_{287})
\end{eqnarray*}


Vertex 45: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-\eta^{0}({p_2})~-\eta^{0}(
{p_3})~$

\begin{eqnarray*}
&V_{45}=f_{181}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 46: $f_2[2300]^{0}_{\mu ,\nu }~({p_1})~-f_0[980]^{0}({p_2})~-
f_0[980]^{0}({p_3})~$

\begin{eqnarray*}
&V_{46}=f_{180}g~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}