$\Delta[1900][+1]$ Two Body Decay Vertices(60)

There are 60 vertices in this part

Vertex 61: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~
-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{61}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{595}i-...
...3}_\nu f_{594} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{595}i)
\end{eqnarray*}


Vertex 62: $N[1675]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{62}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{595}i-...
...3}_\nu f_{594} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{595}i)
\end{eqnarray*}


Vertex 63: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~
-N[1680]^+({p_1})~$

\begin{eqnarray*}
&V_{63}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{576}i)
\end{eqnarray*}


Vertex 64: $N[1680]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{64}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{576}i)
\end{eqnarray*}


Vertex 65: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
N[1520]^+({p_1})~$

\begin{eqnarray*}
&V_{65}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{399}-\...
...nu }f_{398}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{398}i)
\end{eqnarray*}


Vertex 66: $N[1520]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{66}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{399}-\...
...nu }f_{398}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{398}i)
\end{eqnarray*}


Vertex 67: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
N[1700]^+({p_1})~$

\begin{eqnarray*}
&V_{67}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{381}-\...
...nu }f_{380}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{380}i)
\end{eqnarray*}


Vertex 68: $N[1700]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{68}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{381}-\...
...nu }f_{380}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{380}i)
\end{eqnarray*}


Vertex 69: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
N[1720]^+({p_1})~$

\begin{eqnarray*}
&V_{69}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{363}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{362}+\gamma_\nu {p_3}_\mu f_{363}i)
\end{eqnarray*}


Vertex 70: $N[1720]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{70}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{363}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{362}+\gamma_\nu {p_3}_\mu f_{363}i)
\end{eqnarray*}


Vertex 71: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
\Delta[1232][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{71}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{327}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{326}+\gamma_\nu {p_3}_\mu f_{327}i)
\end{eqnarray*}


Vertex 72: $\Delta[1232][+1]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{72}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{327}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{326}+\gamma_\nu {p_3}_\mu f_{327}i)
\end{eqnarray*}


Vertex 73: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
\Delta[1600][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{73}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{309}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{308}+\gamma_\nu {p_3}_\mu f_{309}i)
\end{eqnarray*}


Vertex 74: $\Delta[1600][+1]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{74}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{309}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{308}+\gamma_\nu {p_3}_\mu f_{309}i)
\end{eqnarray*}


Vertex 75: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
\Delta[1700][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{75}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{291}-\...
...nu }f_{290}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{290}i)
\end{eqnarray*}


Vertex 76: $\Delta[1700][+1]^-({p_1})~-\Delta[1900][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{76}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{291}-\...
...nu }f_{290}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{290}i)
\end{eqnarray*}


Vertex 77: $\pi^0({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-N[1675]^+({p_1}
)~$

\begin{eqnarray*}
&V_{77}=-f_{183}g~\gamma_5{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 78: $N[1675]^-({p_1})~-\Delta[1900][+1]({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{78}=f_{183}g~\gamma_5{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 79: $\pi^0({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-N[1680]^+({p_1}
)~$

\begin{eqnarray*}
&V_{79}=-f_{177}gi~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 80: $N[1680]^-({p_1})~-\Delta[1900][+1]({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{80}=f_{177}gi~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 81: $\gamma^{0}_{\mu }~({p_3})~-\overline{P}({p_2})~-\Delta[1900][+1](
{p_1})~$

\begin{eqnarray*}
&V_{81}=f_{122}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 82: $\overline{\Delta[1900][+1]}({p_1})~-P({p_2})~-\gamma^{0}_{\mu }~(
{p_3})~$

\begin{eqnarray*}
&V_{82}=f_{122}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 83: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1440]}({p_2})~-
\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{83}=f_{121}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 84: $\overline{\Delta[1900][+1]}({p_1})~-N[1440]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{84}=f_{121}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 85: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1535]}({p_2})~-
\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{85}=f_{120}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 86: $\overline{\Delta[1900][+1]}({p_1})~-N[1535]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{86}=f_{120}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 87: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1650]}({p_2})~-
\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{87}=f_{119}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 88: $\overline{\Delta[1900][+1]}({p_1})~-N[1650]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{88}=f_{119}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 89: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1710]}({p_2})~-
\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{89}=f_{118}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 90: $\overline{\Delta[1900][+1]}({p_1})~-N[1710]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{90}=f_{118}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 91: $\gamma^{0}_{\mu }~({p_3})~-\overline{\Delta[1620][+1]}({p_2})~-
\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{91}=f_{117}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 92: $\overline{\Delta[1900][+1]}({p_1})~-\Delta[1620][+1]({p_2})~-
\gamma^{0}_{\mu }~({p_3})~$

\begin{eqnarray*}
&V_{92}=f_{117}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 93: $\gamma^{0}_{\mu }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{93}=f_{116}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 94: $\overline{\Delta[1900][+1]}({p_1})~-\Delta[1750][+1]({p_2})~-
\gamma^{0}_{\mu }~({p_3})~$

\begin{eqnarray*}
&V_{94}=f_{116}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 95: $\pi^0({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-N[1520]^+({p_1}
)~$

\begin{eqnarray*}
&V_{95}=-f_{102}g~{p_2}_\mu
\end{eqnarray*}


Vertex 96: $N[1520]^-({p_1})~-\Delta[1900][+1]({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{96}=f_{102}g~{p_2}_\mu
\end{eqnarray*}


Vertex 97: $\pi^0({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-N[1700]^+({p_1}
)~$

\begin{eqnarray*}
&V_{97}=-f_{96}g~{p_2}_\mu
\end{eqnarray*}


Vertex 98: $N[1700]^-({p_1})~-\Delta[1900][+1]({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{98}=f_{96}g~{p_2}_\mu
\end{eqnarray*}


Vertex 99: $\pi^0({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-N[1720]^+({p_1}
)~$

\begin{eqnarray*}
&V_{99}=-f_{90}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 100: $N[1720]^-({p_1})~-\Delta[1900][+1]({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{100}=f_{90}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 101: $\pi^0({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
\Delta[1232][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{101}=-f_{67}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 102: $\Delta[1232][+1]^-({p_1})~-\Delta[1900][+1]({p_2})~-\pi^0({p_3}
)~$

\begin{eqnarray*}
&V_{102}=f_{67}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 103: $\pi^0({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
\Delta[1600][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{103}=-f_{61}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 104: $\Delta[1600][+1]^-({p_1})~-\Delta[1900][+1]({p_2})~-\pi^0({p_3}
)~$

\begin{eqnarray*}
&V_{104}=f_{61}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 105: $\pi^0({p_3})~-\overline{\Delta[1900][+1]}({p_2})~-
\Delta[1700][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{105}=-f_{55}g~{p_2}_\mu
\end{eqnarray*}


Vertex 106: $\Delta[1700][+1]^-({p_1})~-\Delta[1900][+1]({p_2})~-\pi^0({p_3}
)~$

\begin{eqnarray*}
&V_{106}=f_{55}g~{p_2}_\mu
\end{eqnarray*}


Vertex 107: $\pi^0({p_3})~-\overline{P}({p_2})~-\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{107}=-f_{16}gi
\end{eqnarray*}


Vertex 108: $\overline{\Delta[1900][+1]}({p_1})~-P({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{108}=f_{16}gi
\end{eqnarray*}


Vertex 109: $\pi^0({p_3})~-\overline{N[1440]}({p_2})~-\Delta[1900][+1]({p_1}
)~$

\begin{eqnarray*}
&V_{109}=-f_{14}gi
\end{eqnarray*}


Vertex 110: $\overline{\Delta[1900][+1]}({p_1})~-N[1440]({p_2})~-\pi^0({p_3}
)~$

\begin{eqnarray*}
&V_{110}=f_{14}gi
\end{eqnarray*}


Vertex 111: $\pi^0({p_3})~-\overline{N[1535]}({p_2})~-\Delta[1900][+1]({p_1}
)~$

\begin{eqnarray*}
&V_{111}=-f_{13}g~\gamma_5
\end{eqnarray*}


Vertex 112: $\overline{\Delta[1900][+1]}({p_1})~-N[1535]({p_2})~-\pi^0({p_3}
)~$

\begin{eqnarray*}
&V_{112}=f_{13}g~\gamma_5
\end{eqnarray*}


Vertex 113: $\pi^0({p_3})~-\overline{N[1650]}({p_2})~-\Delta[1900][+1]({p_1}
)~$

\begin{eqnarray*}
&V_{113}=-f_{12}g~\gamma_5
\end{eqnarray*}


Vertex 114: $\overline{\Delta[1900][+1]}({p_1})~-N[1650]({p_2})~-\pi^0({p_3}
)~$

\begin{eqnarray*}
&V_{114}=f_{12}g~\gamma_5
\end{eqnarray*}


Vertex 115: $\pi^0({p_3})~-\overline{N[1710]}({p_2})~-\Delta[1900][+1]({p_1}
)~$

\begin{eqnarray*}
&V_{115}=-f_{11}gi
\end{eqnarray*}


Vertex 116: $\overline{\Delta[1900][+1]}({p_1})~-N[1710]({p_2})~-\pi^0({p_3}
)~$

\begin{eqnarray*}
&V_{116}=f_{11}gi
\end{eqnarray*}


Vertex 117: $\pi^0({p_3})~-\overline{\Delta[1620][+1]}({p_2})~-
\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{117}=-f_{10}g~\gamma_5
\end{eqnarray*}


Vertex 118: $\overline{\Delta[1900][+1]}({p_1})~-\Delta[1620][+1]({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{118}=f_{10}g~\gamma_5
\end{eqnarray*}


Vertex 119: $\pi^0({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
\Delta[1900][+1]({p_1})~$

\begin{eqnarray*}
&V_{119}=-f_{9}gi
\end{eqnarray*}


Vertex 120: $\overline{\Delta[1900][+1]}({p_1})~-\Delta[1750][+1]({p_2})~-
\pi^0({p_3})~$

\begin{eqnarray*}
&V_{120}=f_{9}gi
\end{eqnarray*}