$\Delta[1750][+1]$ Two Body Decay Vertices(40)

There are 40 vertices in this part

Vertex 41: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~
-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{41}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{596}i)
\end{eqnarray*}


Vertex 42: $N[1675]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{42}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{596}i)
\end{eqnarray*}


Vertex 43: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~
-N[1680]^+({p_1})~$

\begin{eqnarray*}
&V_{43}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{579}i-...
...3}_\nu f_{578} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{579}i)
\end{eqnarray*}


Vertex 44: $N[1680]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{44}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{579}i-...
...3}_\nu f_{578} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{579}i)
\end{eqnarray*}


Vertex 45: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
N[1520]^+({p_1})~$

\begin{eqnarray*}
&V_{45}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{401}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{400}+\gamma_\nu {p_3}_\mu f_{401}i)
\end{eqnarray*}


Vertex 46: $N[1520]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{46}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{401}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{400}+\gamma_\nu {p_3}_\mu f_{401}i)
\end{eqnarray*}


Vertex 47: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
N[1700]^+({p_1})~$

\begin{eqnarray*}
&V_{47}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{383}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{382}+\gamma_\nu {p_3}_\mu f_{383}i)
\end{eqnarray*}


Vertex 48: $N[1700]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{48}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{383}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{382}+\gamma_\nu {p_3}_\mu f_{383}i)
\end{eqnarray*}


Vertex 49: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
N[1720]^+({p_1})~$

\begin{eqnarray*}
&V_{49}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{365}-\...
...nu }f_{364}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{364}i)
\end{eqnarray*}


Vertex 50: $N[1720]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{\nu }~(
{p_3})~$

\begin{eqnarray*}
&V_{50}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{365}-\...
...nu }f_{364}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{364}i)
\end{eqnarray*}


Vertex 51: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
\Delta[1232][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{51}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{329}-\...
...nu }f_{328}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{328}i)
\end{eqnarray*}


Vertex 52: $\Delta[1232][+1]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{52}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{329}-\...
...nu }f_{328}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{328}i)
\end{eqnarray*}


Vertex 53: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
\Delta[1600][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{53}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{311}-\...
...nu }f_{310}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{310}i)
\end{eqnarray*}


Vertex 54: $\Delta[1600][+1]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{54}=g~(\gamma_5{\hat {p_3}}\gamma_\nu {p_3}_\mu f_{311}-\...
...nu }f_{310}i \\ &+ \sqrt{{p_2}^2}\gamma_5g_{\mu ,
\nu }f_{310}i)
\end{eqnarray*}


Vertex 55: $\gamma^{0}_{\nu }~({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
\Delta[1700][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{55}=g~(- \sqrt{{p_1}^2}g_{\mu ,\nu }f_{293}i+ \sqrt{{p_2}...
...nu {\hat {p_3}}{p_3}_
\mu f_{292}+\gamma_\nu {p_3}_\mu f_{293}i)
\end{eqnarray*}


Vertex 56: $\Delta[1700][+1]^-({p_1})~-\Delta[1750][+1]({p_2})~-\gamma^{0}_{
\nu }~({p_3})~$

\begin{eqnarray*}
&V_{56}=g~( \sqrt{{p_1}^2}g_{\mu ,\nu }f_{293}i- \sqrt{{p_2}^...
...nu {\hat {p_3}}{p_3}_
\mu f_{292}+\gamma_\nu {p_3}_\mu f_{293}i)
\end{eqnarray*}


Vertex 57: $\gamma^{0}_{\mu }~({p_3})~-\overline{P}({p_2})~-\Delta[1750][+1](
{p_1})~$

\begin{eqnarray*}
&V_{57}=f_{128}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 58: $\overline{\Delta[1750][+1]}({p_1})~-P({p_2})~-\gamma^{0}_{\mu }~(
{p_3})~$

\begin{eqnarray*}
&V_{58}=f_{128}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 59: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1440]}({p_2})~-
\Delta[1750][+1]({p_1})~$

\begin{eqnarray*}
&V_{59}=f_{127}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 60: $\overline{\Delta[1750][+1]}({p_1})~-N[1440]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{60}=f_{127}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 61: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1535]}({p_2})~-
\Delta[1750][+1]({p_1})~$

\begin{eqnarray*}
&V_{61}=f_{126}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 62: $\overline{\Delta[1750][+1]}({p_1})~-N[1535]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{62}=f_{126}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 63: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1650]}({p_2})~-
\Delta[1750][+1]({p_1})~$

\begin{eqnarray*}
&V_{63}=f_{125}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 64: $\overline{\Delta[1750][+1]}({p_1})~-N[1650]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{64}=f_{125}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 65: $\gamma^{0}_{\mu }~({p_3})~-\overline{N[1710]}({p_2})~-
\Delta[1750][+1]({p_1})~$

\begin{eqnarray*}
&V_{65}=f_{124}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 66: $\overline{\Delta[1750][+1]}({p_1})~-N[1710]({p_2})~-\gamma^{0}_{
\mu }~({p_3})~$

\begin{eqnarray*}
&V_{66}=f_{124}g~({\hat {p_3}}\gamma_\mu -\gamma_\mu {\hat {p_3}})
\end{eqnarray*}


Vertex 67: $\gamma^{0}_{\mu }~({p_3})~-\overline{\Delta[1620][+1]}({p_2})~-
\Delta[1750][+1]({p_1})~$

\begin{eqnarray*}
&V_{67}=f_{123}g~(-\gamma_5{\hat {p_3}}\gamma_\mu +\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 68: $\overline{\Delta[1750][+1]}({p_1})~-\Delta[1620][+1]({p_2})~-
\gamma^{0}_{\mu }~({p_3})~$

\begin{eqnarray*}
&V_{68}=f_{123}g~(\gamma_5{\hat {p_3}}\gamma_\mu -\gamma_5\gamma_\mu {\hat
{p_3}})
\end{eqnarray*}


Vertex 69: $\pi^0({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-N[1520]^+({p_1}
)~$

\begin{eqnarray*}
&V_{69}=-f_{103}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 70: $N[1520]^-({p_1})~-\Delta[1750][+1]({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{70}=f_{103}gi~\gamma_5{p_2}_\mu
\end{eqnarray*}


Vertex 71: $\pi^0({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
\Delta[1232][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{71}=-f_{68}g~{p_2}_\mu
\end{eqnarray*}


Vertex 72: $\Delta[1232][+1]^-({p_1})~-\Delta[1750][+1]({p_2})~-\pi^0({p_3})~
$

\begin{eqnarray*}
&V_{72}=f_{68}g~{p_2}_\mu
\end{eqnarray*}


Vertex 73: $\pi^0({p_3})~-\overline{\Delta[1750][+1]}({p_2})~-
\Delta[1600][+1]^+({p_1})~$

\begin{eqnarray*}
&V_{73}=-f_{62}g~{p_2}_\mu
\end{eqnarray*}


Vertex 74: $\Delta[1600][+1]^-({p_1})~-\Delta[1750][+1]({p_2})~-\pi^0({p_3})~
$

\begin{eqnarray*}
&V_{74}=f_{62}g~{p_2}_\mu
\end{eqnarray*}


Vertex 75: $\pi^0({p_3})~-\overline{P}({p_2})~-\Delta[1750][+1]({p_1})~$

\begin{eqnarray*}
&V_{75}=-f_{20}g~\gamma_5
\end{eqnarray*}


Vertex 76: $\overline{\Delta[1750][+1]}({p_1})~-P({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{76}=f_{20}g~\gamma_5
\end{eqnarray*}


Vertex 77: $\pi^0({p_3})~-\overline{N[1440]}({p_2})~-\Delta[1750][+1]({p_1})~
$

\begin{eqnarray*}
&V_{77}=-f_{18}g~\gamma_5
\end{eqnarray*}


Vertex 78: $\overline{\Delta[1750][+1]}({p_1})~-N[1440]({p_2})~-\pi^0({p_3})~
$

\begin{eqnarray*}
&V_{78}=f_{18}g~\gamma_5
\end{eqnarray*}


Vertex 79: $\pi^0({p_3})~-\overline{N[1535]}({p_2})~-\Delta[1750][+1]({p_1})~
$

\begin{eqnarray*}
&V_{79}=-f_{17}gi
\end{eqnarray*}


Vertex 80: $\overline{\Delta[1750][+1]}({p_1})~-N[1535]({p_2})~-\pi^0({p_3})~
$

\begin{eqnarray*}
&V_{80}=f_{17}gi
\end{eqnarray*}