$N[1675]^+$ Two Body Decay Vertices(26)

There are 26 vertices in this part

Vertex 27: $\gamma^{0}_{\beta }~({p_3})~-N[1520]^-({p_2})~-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{27}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
...\sqrt{{p_2}^2}
\gamma_5g_{\mu ,\beta }g_{\nu ,\alpha }f_{1106}i)
\end{eqnarray*}


Vertex 28: $N[1675]^-({p_1})~-N[1520]^+({p_2})~-\gamma^{0}_{\beta }~({p_3})~$

\begin{eqnarray*}
&V_{28}=g~(\gamma_5{\hat {p_3}}\gamma_\beta {p_3}_\mu {p_3}_\...
...\sqrt{{p_2}^2}
\gamma_5g_{\mu ,\beta }g_{\nu ,\alpha }f_{1106}i)
\end{eqnarray*}


Vertex 29: $\gamma^{0}_{\beta }~({p_3})~-\Delta[1232][+1]^-({p_2})~-N[1675]^+
({p_1})~$

\begin{eqnarray*}
&V_{29}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{1086}i- ...
...pha f_{1087}i+\gamma_\beta {p_3}_\mu
g_{\nu ,\alpha }f_{1084}i)
\end{eqnarray*}


Vertex 30: $N[1675]^-({p_1})~-\Delta[1232][+1]^+({p_2})~-\gamma^{0}_{\beta }~
({p_3})~$

\begin{eqnarray*}
&V_{30}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{1086}i+ \...
...pha f_{1087}i+\gamma_\beta {p_3}_\mu
g_{\nu ,\alpha }f_{1084}i)
\end{eqnarray*}


Vertex 31: $\gamma^{0}_{\beta }~({p_3})~-\Delta[1600][+1]^-({p_2})~-N[1675]^+
({p_1})~$

\begin{eqnarray*}
&V_{31}=g~(-{p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{1081}i- ...
...pha f_{1082}i+\gamma_\beta {p_3}_\mu
g_{\nu ,\alpha }f_{1079}i)
\end{eqnarray*}


Vertex 32: $N[1675]^-({p_1})~-\Delta[1600][+1]^+({p_2})~-\gamma^{0}_{\beta }~
({p_3})~$

\begin{eqnarray*}
&V_{32}=g~({p_3}_\mu {p_3}_\nu g_{\alpha ,\beta }f_{1081}i+ \...
...pha f_{1082}i+\gamma_\beta {p_3}_\mu
g_{\nu ,\alpha }f_{1079}i)
\end{eqnarray*}


Vertex 33: $\gamma^{0}_{\alpha }~({p_3})~-\overline{P}({p_2})~-N[1675]^+(
{p_1})~$

\begin{eqnarray*}
&V_{33}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{608}i)
\end{eqnarray*}


Vertex 34: $N[1675]^-({p_1})~-P({p_2})~-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{34}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{608}i)
\end{eqnarray*}


Vertex 35: $\gamma^{0}_{\alpha }~({p_3})~-\overline{N[1440]}({p_2})~-
N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{35}=g~(-\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}...
...\\ &- \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{606}i)
\end{eqnarray*}


Vertex 36: $N[1675]^-({p_1})~-N[1440]({p_2})~-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{36}=g~(\gamma_5{\hat {p_3}}\gamma_\alpha {p_3}_\mu {p_3}_...
...\\ &+ \sqrt{{p_2}^2}\gamma_5{p_3}_\nu g_{\mu ,\alpha }
f_{606}i)
\end{eqnarray*}


Vertex 37: $\gamma^{0}_{\alpha }~({p_3})~-\overline{N[1535]}({p_2})~-
N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{37}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{605}i-...
...3}_\nu f_{604} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{605}i)
\end{eqnarray*}


Vertex 38: $N[1675]^-({p_1})~-N[1535]({p_2})~-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{38}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{605}i-...
...3}_\nu f_{604} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{605}i)
\end{eqnarray*}


Vertex 39: $\gamma^{0}_{\alpha }~({p_3})~-\overline{N[1650]}({p_2})~-
N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{39}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{603}i-...
...3}_\nu f_{602} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{603}i)
\end{eqnarray*}


Vertex 40: $N[1675]^-({p_1})~-N[1650]({p_2})~-\gamma^{0}_{\alpha }~({p_3})~$

\begin{eqnarray*}
&V_{40}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{603}i-...
...3}_\nu f_{602} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{603}i)
\end{eqnarray*}


Vertex 41: $\gamma^{0}_{\alpha }~({p_3})~-\overline{\Delta[1620][+1]}({p_2})~
-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{41}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{599}i-...
...3}_\nu f_{598} \\ &-
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{599}i)
\end{eqnarray*}


Vertex 42: $N[1675]^-({p_1})~-\Delta[1620][+1]({p_2})~-\gamma^{0}_{\alpha }~(
{p_3})~$

\begin{eqnarray*}
&V_{42}=g~( \sqrt{{p_1}^2}{p_3}_\nu g_{\mu ,\alpha }f_{599}i-...
...3}_\nu f_{598} \\ &+
\gamma_\alpha {p_3}_\mu {p_3}_\nu f_{599}i)
\end{eqnarray*}


Vertex 43: $\pi^0({p_3})~-N[1520]^-({p_2})~-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{43}=-g~({p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{500}+{p_2}_\mu g_{\nu ,\alpha
}f_{501})
\end{eqnarray*}


Vertex 44: $N[1675]^-({p_1})~-N[1520]^+({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{44}=g~({p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{500}+{p_2}_\mu g_{\nu ,\alpha }
f_{501})
\end{eqnarray*}


Vertex 45: $\pi^0({p_3})~-\Delta[1232][+1]^-({p_2})~-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{45}=-gi~(\gamma_5{p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{496}+\gamma_5{p_2}_
\mu g_{\nu ,\alpha }f_{497})
\end{eqnarray*}


Vertex 46: $N[1675]^-({p_1})~-\Delta[1232][+1]^+({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{46}=gi~(\gamma_5{p_2}_\mu {p_2}_\nu {p_3}_\alpha f_{496}+\gamma_5{p_2}_
\mu g_{\nu ,\alpha }f_{497})
\end{eqnarray*}


Vertex 47: $\pi^0({p_3})~-\overline{P}({p_2})~-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{47}=-f_{187}gi~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 48: $N[1675]^-({p_1})~-P({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{48}=f_{187}gi~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 49: $\pi^0({p_3})~-\overline{N[1440]}({p_2})~-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{49}=-f_{185}gi~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 50: $N[1675]^-({p_1})~-N[1440]({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{50}=f_{185}gi~{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 51: $\pi^0({p_3})~-\overline{N[1535]}({p_2})~-N[1675]^+({p_1})~$

\begin{eqnarray*}
&V_{51}=-f_{184}g~\gamma_5{p_2}_\mu {p_2}_\nu
\end{eqnarray*}


Vertex 52: $N[1675]^-({p_1})~-N[1535]({p_2})~-\pi^0({p_3})~$

\begin{eqnarray*}
&V_{52}=f_{184}g~\gamma_5{p_2}_\mu {p_2}_\nu
\end{eqnarray*}