%%%%%%%% The MSSM model in R-ksi gauge %%%%%%%%%%% algebraic$ mix_pa_order_list:='((sp sz sh11 sh22) (h2 h1)); supersymmetry:='yes; %------------------------- Gauge fields ------------------------------- gaugefields:= % No. Name SU(n) notation couping gaugefixterm gauge_p breaking % superparter sbreakingmass % '((1 u 1 b g1 gfix1 infinit yes sb ) % (2 su 2 a g2 gfix2 infinit yes sa ) '((1 u 1 b g1 gfix1 1 yes sb ) (2 su 2 a g2 gfix2 1 yes sa ) (3 su 3 gs g3 gfix3 1 no sgs ) )$ gfix1:=pd(b(v),v)$ gfix2:=pd(a(i1,v),v)$ gfix3:=pd(gs(i1,v),v)$ %---------------------------------------------------------------------- %------------------------ Matter fields -------------------------------- matterinput:={{name, 2*spin, chiral, "|g", 1, 2, 3}, { hig1, 0 , l , -1, 2, 0}, { hig2, 0 , l , 1, 2, 0}, { el , 1, l , -1, 2, 0}, { er , 1, r , -2, 0, 0}, { q1l , 1, l , 1/3, 2, 3}, { q1dr, 1, r , -2/3, 0, 3}, { q1ur, 1, r , 4/3, 0, 3} }$ % all particles in this list are in anti-express "-lamda^{*,a}" of su(3) % and will be switch back to su(3) express "lamda^a for fermion and "-lamda^a" % for scalar. It use "lamda^a" for scalar in fdc until Dec. 7, 1999. sup_anti_list:='(er q1dr q1ur sqdr squr ser); gbsymmetrylist:={len,lmu,ltau,lq1,lq2,lq3}; gbsymmetrydata:={ {len, {el,1}, {er,1}}, {lmu, {mul,1}, {mur,1}}, {ltau, {taul,1}, {taur,1}}, {lq1, {q1l,1}, {q1dr,1}, {q1ur,1}}, {lq2, {q2l,1}, {q2dr,1}, {q2ur,1}}, {lq3, {q3l,1}, {q3dr,1}, {q3ur,1}} }; give_up_compact:='ok; % means that to give up compacting model, if you % want to compact the model, then comment out this line do_switch:='ok; % means to define all scalar particle with un-positive charge, % i.e, 0 or negtive, and anti-particle with negtive charge. % comment this option means define all particle as way which % they are declared in their input. % if you want to put complex coeffcient for matter interaction % term, please uncomment the following line. % real_matter_interaction_parameter:=nil; % name n_group 1_componet 2_componet ... mdefl:={{hig1, {2, h1, xx1},{2,sh11,sh12}}, {hig2, {2, xx2, h2},{2,sh21,sh22}}, {el , {2, nue , ef},{2,snue,sel}}, {er , {2, ef },{2,ser}}, {q1l , {2, qu , qd},{2,squl,sqdl}}, {q1dr, {2, qd },{2,sqdr}}, {q1ur, {2, qu },{2,squr}}, {qu, {3, qu(1), qu(2) , qu(3)}}, {squl, {3, squl(1), squl(2) , squl(3)}}, {squr, {3, squr(1) , squr(2) , squr(3)}}, {qd, {3, qd(1) , qd(2) , qd(3)}}, {sqdr, {3, sqdr(1) , sqdr(2) , sqdr(3)}}, {sqdl, {3, sqdl(1) , sqdl(2) , sqdl(3)}} }$ redefine_boson:='1; no_cp_redefine_list:='(snue); realfamily:='((q1l q2l q3l) (q1dr q2dr q3dr) (q1ur q2ur q3ur) (qu qc qt) (qd qs qb) (squl sqcl sqtl) (sqdl sqsl sqbl) (squr sqcr sqtr) (sqdr sqsr sqbr) (el mul taul) (er mur taur) (ef mu tau) (nue numu nut) (sel smul staul) (ser smur staur) (snue snumu snut) ); %%%%%%%%%%% where l=(1-r_5)/2, r=(1+r_5)/2$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% g=sqrt(g1**2+g2**2), sin(theta)=g1/g, g1=g*sin(theta), g2=g*cos(theta) %% %% e=g*sin(theta)*cos(theta) %%----------------------------------------------------------------------------%% phyinput_mass:='(tau qt qb h2a); phyinput:={g3, g, beta1,theta,v0}; charge_def:=tp(2,3)+tp(1,1)/2; coupling_comment:='( (g3 " strong interaction ") (g "electro-weak interaction ") ); proton_like_list:='((proton qu qd qub qdb gs)); model_input_comment:='"This is Standard Model in unitary gauge, include electro-weak interaction and QCD, Quark mixing terms are droped."; %ntype_drop_list:='((1 0 2) (0 1 2) (0 3 0) (0 4 0) (1 2 0) (1 3 0) % (2 1 0) (2 2 0) (3 0 0) (3 1 0)); %coupling_drop_list:='(g); %just_brs_check:='ok; kauro_feynman_rule:='ok; ;end$