next up previous contents
Next: G-quark-quark 4 Vertices Up: The Vertices of electro-weak Previous: G-lepton-lepton 3 Vertices   Contents

Higgs-quark-quark 8 Vertices

There are 8 vertices in the section

Vertex 7 and type=1: $\overline{t}({p_1})~-t({p_2})~-h({p_3})~$

\begin{eqnarray*}&
{a_L^{SFF}}(7)=\displaystyle{-{\cos {\alpha}} ~{m_{t}}~g~i~ ...
...{-{\cos {\alpha}} ~{m_{t}}~g~i~ \over 2~{\sin {\beta}} ~{m_{Z}}~}\end{eqnarray*}



Vertex 8 and type=1: $\overline{t}({p_1})~-t({p_2})~-H({p_3})~$

\begin{eqnarray*}&
{a_L^{SFF}}(8)=\displaystyle{-{\sin {\alpha}} ~{m_{t}}~g~i~ ...
...{-{\sin {\alpha}} ~{m_{t}}~g~i~ \over 2~{\sin {\beta}} ~{m_{Z}}~}\end{eqnarray*}



Vertex 10 and type=1: $\overline{t}({p_1})~-t({p_2})~-A({p_3})~$

\begin{eqnarray*}&
{a_L^{SFF}}(10)=\displaystyle{{\cos {\beta}} ~{m_{t}}~g~ \ov...
...yle{-{\cos {\beta}} ~{m_{t}}~g~ \over 2~{\sin {\beta}} ~{m_{Z}}~}\end{eqnarray*}



Vertex 12 and type=1: $\overline{t}({p_1})~-H^+({p_3})~-b({p_2})~$

\begin{eqnarray*}&
{a_L^{SFF}}(12)=\displaystyle{ \sqrt{2}~{\cos {\beta}} ~{m_{...
...2}~{\sin {\beta}} ~{m_{b}}~g~i~ \over 2~{\cos {\beta}} ~{m_{Z}}~}\end{eqnarray*}



Vertex 13 and type=1: $\overline{b}({p_1})~-b({p_2})~-h({p_3})~$

\begin{eqnarray*}&
{a_L^{SFF}}(13)=\displaystyle{{\sin {\alpha}} ~{m_{b}}~g~i~ ...
...e{{\sin {\alpha}} ~{m_{b}}~g~i~ \over 2~{\cos {\beta}} ~{m_{Z}}~}\end{eqnarray*}



Vertex 14 and type=1: $\overline{b}({p_1})~-b({p_2})~-H({p_3})~$

\begin{eqnarray*}&
{a_L^{SFF}}(14)=\displaystyle{-{\cos {\alpha}} ~{m_{b}}~g~i~...
...{-{\cos {\alpha}} ~{m_{b}}~g~i~ \over 2~{\cos {\beta}} ~{m_{Z}}~}\end{eqnarray*}



Vertex 16 and type=1: $\overline{b}({p_1})~-t({p_2})~-H^-({p_3})~$

\begin{eqnarray*}&
{a_L^{SFF}}(16)=\displaystyle{ \sqrt{2}~{\sin {\beta}} ~{m_{...
...2}~{\cos {\beta}} ~{m_{t}}~g~i~ \over 2~{\sin {\beta}} ~{m_{Z}}~}\end{eqnarray*}



Vertex 18 and type=1: $\overline{b}({p_1})~-b({p_2})~-A({p_3})~$

\begin{eqnarray*}&
{a_L^{SFF}}(18)=\displaystyle{{\sin {\beta}} ~{m_{b}}~g~ \ov...
...yle{-{\sin {\beta}} ~{m_{b}}~g~ \over 2~{\cos {\beta}} ~{m_{Z}}~}\end{eqnarray*}





wang jian xiong 2006-11-07